

SECURE DOCKING STATION AND ITS PROTECTION AGAINST HARDWARE ATTACKS

26th April 2012

Overview

- **★** Motivation
- **★** SDM concept and objectives
- **★** SDM Hardware structure
- **★** SDM Hardware attacks
- **★ SDM AES attack countermeasures**
- ★ SDM RSA crypto core Basic concept and attack countermeasures

Motivation

- ★ How to offer strong security and trust in crisis management environments?
- ★ Secure communication between emergency responders
- ★ The emergency responders must be able to <u>trust each other</u> as well as <u>trust their communication devices</u> (regardless how different they might be).
- ★ In crisis situations, agencies act under hostile, unsecure communication environments where communication can be interrupted or disturbed.
- ★ Trusted Computing Group solutions (like TPM) are not adequate, since they require a reliable communication channel. Trust attestation services must be provided locally on agency devices and not remotely.
- Our goal: to provide to the user a local trust attestation device

Secure Docking Module (SDM) Concept

The SDM:

- ★ is a hardware "smart card" like device
- ★ Is connected to a Host Machine
- ★ Provides advanced security and trust services
- ★ Acts as local Trusted third party.
- ★ Employs trusted computing principles. Works in cooperation with Host's TPM chip (when available) or the trusted infrastructure of mobile devices.

Secure Docking Module Objectives

- **★** Development of the Secure Docking Module (SDM),
 - ★ Is a specialized security chip
 - ★ Provides secure storage of trust measurements and credentials (keys)
 - Allows mobile agents to dock on to secure communication infrastructure
 - Ensures the trusted state of host device
 - ★ Protected against Hardware malicious attacks

★ Secure Docking Module Purpose

- ★ Validates the local software integrity of a Host platform through trust measurements.
- ★ Provides sufficient proof that the measurements are authentic, fresh and untampered
- ★ Binds a person and not only a device to the crisis communication system
- ★ Ease of use to an emergency scenario
- Small overhead to the needed infrastructure for achieving strong security

SDM Hardware Attacks

- ★ Traditional cryptanalysis Attacks fail for high bit length keys (RSA: 1024-2048 bit keys, AES: 128 bit keys)
- ★ Semi invasive and Non invasive hardware attacks are easily mounted on unprotected Hardware and can compromise the system
 - ★ Non invasive (Side channel attacks(SCA)): successful in determining crypto keys using information leaking from a straightforward Hardware implementation of the algorithm (power, electromagnetic dissipation, timing e.t.c.)
 - Power Attack (PA): a hardware device's power trace is measured and exploited for secret information leakage either statically (Simple PA) or statistically (Differential PA)
 - ★ <u>Semi-Invasive (Fault Attack (FA))</u>: disturb a hardware device during cryptographic operation execution, analyze the faulty behavior of the disturbed device and as a result deduce sensitive information
 - <u>Differential Fault attack (DFA):</u> correlating the results of a correct algorithm execution with the results of a faulty execution...collecting enough measurements can reveal the key.

Low level SDM commands

SDM concept – Hardware structure

AES Accelerator Countermeasures

★ DFA protection:

- Detection through spatial duplication
- ★ Detect errors and react to them:
 - Return a constant value or
 - Return a random value

M.Doulcier-Verdier, J-M. Dutertre, J. Fournier, J-B. Rigaud, B. Robisson & A. Tria, « A side-channel and fault attacks resistant AES cicuit working on duplicated complemented values » in proc. of IEEE International Conference on Solid State circuits 'ISSCC 2011'.

- ★ Detection through spatial duplication
 - To instances of the algorithm are implemented, working in parallel thus detecting the existence of faults.
 - Blur erroneous ciphertext with scrambled values of detected error

★ SCA protection:

- ★ Two instances of the algorithm are designed:
 - One instance computes a bit of each intermediate value
 - the other instances computes the complement bit of each intermediate value.
 - Provides constant hardware leakage characteristics (power dissipation, electromagnetic emission e.t.c)

RSA Specifications

- ★ More than Reasonable speed
- **★**Support for the SDM functionality (expandable to the SDM key lengths)
- ★ Capable for encryption and decryption
- ★Strongly protected against popular and disruptive Hardware attacks (Side Channel Attacks and Fault attacks)

RSA Protection Mechanism

- ★The SDM chip must be protected against simple and sophisticated Hardware attacks
- ★The Side channel attack countermeasures must be up to date and can be adapted for continuous protection against possible future attacks

The RSA core basic concept -protection support

RSA Architecture Approaches

- **★**Two approaches:
 - ★ Non CRT RSA cryptographic core:
 - Traditional approach
 - Fully compatible with the SDM TPM specifications:
 - Up to 2048 bit keys in non CRT form
 - ★ CRT approach (the leap to the future):
 - Fast encryption decryption
 - Small chip covered area
 - Modern RSA solution

RSA Architecture Basic Concept

★ The Heart of the System

Presented in 2010 IEEE International Symposium on Circuits and Systems (ISCAS 10), Paris, France

END Of PRESENTATION

THANK YOU QUESTIONS?

