
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [HEAL-Link Consortium]
On: 7 May 2010
Access details: Access Details: [subscription number 786636650]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Information Security Journal: A Global Perspective
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t768221795

Trust Ensuring Crisis Management Hardware Module
Apostolos P. Fournaris a

a Hitachi Europe SAS, Information and Communication Technologies Lab., European R-D Centre,
France

Online publication date: 13 April 2010

To cite this Article Fournaris, Apostolos P.(2010) 'Trust Ensuring Crisis Management Hardware Module', Information
Security Journal: A Global Perspective, 19: 2, 74 — 83
To link to this Article: DOI: 10.1080/19393550903404910
URL: http://dx.doi.org/10.1080/19393550903404910

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t768221795
http://dx.doi.org/10.1080/19393550903404910
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Information Security Journal: A Global Perspective, 19:74–83, 2010
Copyright © Taylor & Francis Group, LLC
ISSN: 1939-3555 print / 1939-3547 online 
DOI: 10.1080/19393550903404910 

74

UISS1939-35551939-3547Information Security Journal: A Global Perspective, Vol. 19, No. 2, Mar 2010: pp. 0–0Information Security Journal: A Global Perspective

Trust Ensuring Crisis Management
Hardware Module

Trust Ensuring Crisis Management Hardware ModuleA. P. FournarisApostolos P. Fournaris
Hitachi Europe SAS, Information 
and Communication 
Technologies Lab., 
European R-D Centre,  
Sofia Antipolis,  France 

Address correspondence to Apostolos 
P. Fournaris, VLSI Design lab, Electrical 
and Computer Engineering Dpt., 
University of Patras, Patros–Rio 
Campus, 26500, Greece.

ABSTRACT Mobile agent systems (MAS) suffer from security holes that in a
crisisdisaster management system can be fatal. Trusted computing group’s
TPM chip can be used to solve the problem but only partially. The extreme
physical conditions and particularities of the crisis management agent plat-
form do not permit the full exploitation of the TPM’s features. To solve this
problem the use of a special purpose hardware module, physically connected
to a host crisis management device as a local trusted third party, has been pro-
posed. In this paper, we analyze the functionality and structure of such a hard-
ware module, called Autonomous Attestation Token (AAT) and show how a
successful attack can be launched on it. To counter this attack, we propose a
more sophisticated key release protocol for the communication between the
AAT and the host device. This is achieved by securing the communication
channel between the two devices. Also, a detailed hardware structure of the
AAT is proposed. This hardware structure support the proposed key release
protocol. To further analyze this, we identify the basic operations needed by
the AAT hardware components and propose a sequence of actions and associ-
ated signals that those components need to follow to support those operation.

Keywords Crisis management systems, mobile agent security, trusting computing,
trusted platform module

1. INTRODUCTION
In a modern system, responsible for managing critically dangerous situa-

tions, a wide variety of factors should be considered if such a system is to be
marked successful. Such factors could be the seamless flow of information, the
data integrity and the system’s efficient control and management. However,
an important factor that has an increasing effect in the credibility of a crisis
management system is security and trust. When dealing with emergency situa-
tions, information must be directed accurately to the correct agency but most
of all this information must be delivered unchanged and protected from unin-
tended access and malicious attacks. Therefore, the question that rises in the
above scenario is how trust can be ensured when information is exchanged
through the data channels of a communication system designed for critical
situations such as danger, crisis events, or accidents (e.g., forest fires, dump
overflows, terrorist actions, power plant failures).
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75 Trust Ensuring Crisis Management Hardware Module

Mobile Agent systems are gaining ground in modern
communication because they that can offer sophisti-
cated services to network structures with diverse charac-
teristics. A mobile agent can move through a network
and can be executed in a different machine than the
one in which it was created (Braun & Rossak, 2004).
Therefore, it can achieve very high flexibility. Mobile
agent systems are efficient for data collection, sharing,
and management; thus, they make ideal candidates for
crisis management systems where such services are of
fundamental value. However, the mobile agent para-
digm suffer from some serious security problems
(Chess, 1998) that are based on the main mobile agent
principle of allowing code execution on your computer
machine that is created on a different machine. There
should be a well-defined guarantee that the executed
mobile agent code can be trusted and that it is not part
of a malicious program set by the agent issuing machine
to compromise your computer.

An answer to problems of trust in computer sys-
tems is given by the Trusted Computing Group in a
form of a Trusted Platform Module (TPM), a hardware
module similar to a smart card that is securely bound
to its host computer system (TCG, 2007). Many
researchers (Wu et al., 2008; Shen & Wu, 2008; Tan &
Moreau, 2001; Wilhelm et al., 1998) have remarked
that trusted computing using TPM chips can be effec-
tively applied to mobile agent systems, ensuring in
that way that a mobile agent comes from a trusted
source. Through a chain of trust approach, a TPM can
ensure that the host computer system cannot be tam-
pered with or misused even if the computer user is
malicious. One of the basic aspects, however, of ensur-
ing this notion of trust is through a process called
“remote attestation” that involves the communication
of the TPM-based computer system with a remote
trusted computer system in order to request required
security characteristics (e.g., keys, credentials). This
service cannot always be available in a crisis situa-
tion where unpredictable events can occur, the
mobile agent system may not always be fully avail-
able, and the communication channel is always
under extreme stress. A solution to this problem is
given in (Hein & Toegl, 2009) where an operation
denoted as ”local attestation” is introduced. The
functionality of this operation is based on a Autono-
mous Attestation Token (AAT) where a series of
keys, credentials per computer system (TPM based),
are stored in a secure way. The retrieval of these

credentials can only be done after a successful local
attestation session.

In this paper, an analysis on functionality and espe-
cially on the key release protocol of the AAT is done
and security problems are discovered. We describe an
attack scenario on communication of the host device
and the AAT where the key stored in the AAT can be
eavesdropped from a third unauthorized entity. This
attack is feasible because in the key release protocol of
(Hein & Toegl, 2009) the communication channel is
insecure and there is no way for the host device to ver-
ify if the AAT is a legitimate chip or a false malicious
non AAT device. To solve these problems, a sophisti-
cated key release protocol is proposed that can secure
the communication channel and guarantee the authen-
ticity of the AAT chip through already existing struc-
tures of the AAT chip. Also, the hardware structure of
the AAT unit is investigated and a detailed AAT archi-
tecture is proposed. The interconnections between the
cryptographic units inside the AAT are analyzed and
the control logic of the system is described in detail. To
demonstrate the exact functionality of the AAT in the
proposed key release protocol, the basic operation
needs for a successful protocol session are identified,
analyzed, and translated into a sequence of action steps
that the AAT internal units must perform to execute
this session with out fail.

The paper is organized as follows. In section 2,
basic trusted computing principles and the TPM struc-
ture are presented. In section 3, mobile agent systems
in disaster-crisis management are described, and in
section 4 attestation using hardware modules such as
the AAT are analyzed. Section 5 describes the attack
model that can be followed to compromise the AAT
communication, and in section 6 a key release proto-
col is proposed and analyzed that resists the indicated
attacks. In section 7, a hardware structure for the AAT
is described in detail, and the AAT exact functionality
is proposed. Section 8 concludes the paper.

2. TRUSTED COMPUTING AND TPM
Trusted Computing is an emerging technology

developed for designing systems that can be consid-
ered trusted. The approach of this technology is based
on the principle that if the use of malicious code or
behavior is impossible to be executed in a computer
system, then the system itself is secure and can be
trusted for any possible secure transaction. For this
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A. P. Fournaris 76

reason, the software and hardware devices of a trusted
computer system must be measured so as to estimate
the system’s level of trust. The services that can be
attributed to a computer system following the above
methodology are determined by the level of trust that
this computer system is capable of providing.

In order to better describe the functionality and prin-
ciples of the trusted computing approach, a consortium
of IT enterprises was formed recently. This consortium,
known as the Trusted Computing Group, is responsible
for applying, implementing and extending the Trusted
Computing ideas to well known and established com-
puter systems either by introducing new hardware or
software modules or by designing appropriate protocols
for those modules. From its moment of formulation,
the TCG has done some serious work in achieving the
above goals, and through the TCG, new, innovative
technologies have been proposed and described.

An established such technology, realized as a full
product by some companies, is the Trusted Platform
Module. This is a hardware module-chip with
enhanced security characteristics that operates as an
independent security measuring hardware mechanism
applicable to any computer system. The TPM through
a specific measurement approach (TCG, 2007) ensures
that the host system can be trusted and therefore can
be used in a security demanding environment.

2.1. Trusted Platform Module 
Structure and Functionality

Currently, the TPM is a smart-card like hardware
chip that is security bound to the computer system
(usually soldered on the system’s motherboard). In the
TPM 1.2 version (TCG, 2007), the chip is equipped
with all the necessary components in order to support
strong security features. Apart from the I/O interface,
necessary for the TPM communication with the exter-
nal world, inside the TPM there are a series of crypto-
graphic hardware components. The generation of
random numbers (usually public, private key pairs) is
assigned to a true random generator unit that collects
entropy or use unpredictable values like thermal noise
to create random number values. For digital signature
and authentication-authorization support, there is a
public key encryption/decryption unit and a hash
function unit. At the moment, the TPM functionality
supports only RSA keys and 160 bit hashes; therefore,

the TPM public key encryption/decryption unit is an
RSA module (supporting a variety of key lengths)
while the hash function unit employ the SHA-I 160
bit hash algorithm. The TPM also supports the secure
storage of security-sensitive values (e.g., public-private
key pairs or measurement states) in special memory
units. Those memory units are a nonvolatile, secure
memory and a series of special purpose Platform Con-
figuration Registers (PCR) that can only store an
extended version of their previous values (usually a
hashing of their previous value). All those units are
security-protected in order to resist hardware attacks.
Finally, there is a processor unit along with assorted
memory RAM and ROM units that is responsible for
implementing the TPM functionality.

The TPM is used for a variety of different functions.
The most important one is the measurement of the
system for ensuring trust. This operation is done by
establishing a root of trust for the system’s behavior.
More specifically, the TPM that can be considered
present from the power of a computer system, mea-
sures the system from boot through a daisy chain pro-
cess (chain of trust). First, the TPM root of trust gains
control of the system (it is usually a subset of the
BIOS called secure BIOS), then the BIOS is measured
and if trusted, control is passed to it. The chain of
trust is established in a similar fashion through all the
stages in the boot sequence of a computer system
(Secure BIOS, BIOS, boot loader, OS kernel and OS).
If the chain is not broken in any stage of the boot
sequence, then the system can be trusted. The chain
of trust functionality is implemented through the
TPM’s PCRs. The idea behind the PCR approach is
that the data provided by each measurement are
always concatenated to the value of an appropriate
PCR that contains a hash value of a previous measure-
ment. The result of this concatenation is hashed and
the outcome is stored in the same PCR. This is called
an extend operation. A history of the extend opera-
tions performed to a specific PCR value is kept outside
the TPM. The sequence of extends on the history file,
managed by software outside the TPM, is compared to
the current PCR value in the TPM and must be the
same for trust to be ensured.

An extension of the chain of trust functionality is
the process of reporting the current system’s trust state
to the external environment (i.e., a remote computer
system) and to provide evidence of this report integ-
rity and authenticity. This operation, supported by the
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77 Trust Ensuring Crisis Management Hardware Module

TPM, is called remote attestation. During remote
attestation, a protocol is executed between the TPM’s
host machine and the remote machine. This protocol
involves the use of a quote, which is a message send by
the TPM host machine including the system’s trust
level. This quote can be verified by the remote
machine through an authentication process (included
in the mentioned protocol) and thus certifies that the
TPM host system can be trusted.

3. MOBILE AGENT SYSTEMS
The mobile agent paradigm has been identified by

several authors as a promising and innovative way of
structuring and managing services on distributed com-
puting network systems. A mobile agent consists of
code, data, and its current execution state that is con-
trolled by an entity called agent owner. The mobile
agent is usually send to be executed over the network
to a different entity called the agent executor. The
agent can be send in a secure way to ensure its confi-
dentiality and its integrity and its origin can be
authenticated. When the mobile agent is downloaded
to the agent executor, the agent owner transfers the
mobile agent control to the new agent host (agent
executor). The agent executor instantiates the agent on
a special environment called the agent platform (AP).
The mobile agent, when is executed in the AP, can
interact with services and other agents of this platform
in order to fulfill the task for which it was designed by
the agent owner.

An agent owner loses control of a mobile agent
after the later is released in the agent platform to be
managed and run by an agent executor. Therefore, the
smooth functionality of a mobile agent system is
related to the efficient management applied by the
mobile agent execution environment (the agent execu-
tors). Apart from technical problems related to each
agent executor it is the security credibility of each
executor that can affect the whole agent platform. In
other words, if the execution environment of a mobile
agent sponsors malicious behavior then the data col-
lected, manipulated or transmitted from this mobile
agent may extrapolate the executor’s malicious behav-
ior to the whole AP. Thus, before enabling the down-
loading and execution of a mobile agent, the agent
owner must be able to trust the agent executor. On the
other hand, a legitimate agent executor cannot accept
mobile agents from any source in an AP regardless of

the fact that this source may have validated authenti-
cation. There can be no evidence that even a legiti-
mate agent owner is not compromised over time in a
distributed network environment and therefore publish
malicious mobile agents.

The above problems can be solved efficiently
through trusted computing (Wilhelm, 1999; 1998). By
equipping the agent platform machines (agent owner,
agent executors) with TPM chips, all involved parties
are bound by trust. Each agent platform machine can
use the TPM feature of remote attestation in order to
be informed of the level of trust of another agent
machine concerning an agent. In that way, an agent
executor can know before taking control of an agent if
this agent was issued by an agent machine that is not
compromised, or that this agent was not tampered
with by any other agent machine. In similar fashion,
an agent will not be transmitted to an agent executor
that has malicious behavior (e.g., works as a trojan,
virus, worm or zombi machine) since through the
TPM’s remote attestation this will be evident and the
machine will not pass the remote attestation tests.

3.1. Mobile Agent System Security 
in Disaster-Crisis Management

Mobile agents can be used efficiently in systems
where collection, distribution of data, and manipula-
tion on those data is of vital importance. Thus, mobile
agent systems make a suitable candidate for use in
crisis management systems as indicated in (Hein &
Toegl, 2009). In a crisis scenario, after a disaster situa-
tion, a mobile team of a wide variety of authorities are
dispatched in the area to minimize the disaster effects.
The obvious choice would be to establish a voice
communication network for the efficient cooperation
and management of the team. However, a better han-
dling of the crisis situation require much more than
voice data. The data exchanged in a crisis management
network might be on site photos, documents, notes,
voice recordings (i.e., witness testimonies), or a
mixture of the above. Thus, the communication
requirements indicate that there is a need for a fully
functional computer communication distributed net-
work. It can be assumed that an IP-based distributed
network can suffice. Each member of the team can be
equipped with a computer system able to connect to the
network and run the services provided by this network.
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A. P. Fournaris 78

This computer system can be any device that can
support network IP communication regardless of the
network channel communication that it employs.
Therefore, there can be a wide variety of devices
involved in a crisis management network, such as
notebook or desktop computers, personal digital assis-
tents (PDAs), and smartphones under 3G-GSM,
802.11, or Tetra channel network.

The communication network can be run as a
mobile agent system. There is a series of agents issued
from specific trusted machines, acting as the network
infrastructure, that can support the crisis management
system’s collect, distribute and manipulate services on
each member’s computer system. All the above
described in field computers (IFC) along with the
trusted infrastructure machines constitute the Crisis
Management Agent Platform (CMAP). Every new IFC
need to connect to the CMPA in order to have access
to the crisis management system’s services. Ideally,
trust could be ensured by embedding TPM chips in
every IFC. In that way, each agent owner and executor
can validate another machine’s trust by remote attesta-
tion. However, due to the critical nature of the crisis
management network, there is a lot of diversity on the
conditions that this network must work in. There a
need for the CMAP network to be fully functional
from the moment the first authority team arrives on
the site of crisis. In that case, many parts of the net-
work will not be functional, like server machines used
for remote attestation arbiters. Also, dew to the on site
conditions, which are expected by default to be harsh
and hostile, network remote connectivity is bound not
to be optimal. Obviously, in practice the existence of
TPM cannot fully guaranty trust between IFC’s since
those devices cannot without failure attest them-
selves remotely. The TCG’s TPM supports some
additional mechanisms for displaying and verifying
the trust state of a computer system, such as sealing
and secure boot. However, those solutions are highly
inflexible and offer poor usability (Hein & Toegl,
2009). Flexibility and usability are of vital impor-
tance on a crisis management system since complex
procedures may very well delay the team personnel
and result in critical errors in stressful conditions.
Therefore, there may exist serious security and practi-
cality holes in TCG’s TPM only approach for a
trusted CMAP that if malicious entities manipulate
them they can cause additional damage to an already
disastrous situation.

4. ATTESTATION THROUGH SECURITY 
HARDWARE MODULE

In order to enable a more sophisticated trust attesta-
tion mechanism, some researchers have suggested the
use of additional special purpose hardware chips. The
purpose of those chips is to provide a tamper proof
secure and trusted environment for executing agents
and support the use of trusted third party entities
(Wilhelm et al., 1999) or just offer a positive or nega-
tive answer on the system’s question of trust (McCune
et al., 2007). However, a promising approach is
described in (Hein & Toegl, 2009) proposing a device
(Autonomous Attestation Token) that does not need
to be burdened with the execution of whole agent sys-
tems but needs hold only the keys for using those
agents and unlocking their services. This device is
designed for a CMAP.

This Autonomous Attestation Token (AAT) is
described as an SD card that is physically attached to
an IFC and upon request from its host releases the
keys related to this host only if the host provides suffi-
cient credential that it is in a trusted state. The keys for
each IFC host along with the IFC host’s id and public
key are stored in the AAT secure memory. We can
assume that the AAT has a unique id number and a
set of cryptographic keys (public, private key pair) that
should not be transmitted in any way through the
communication channel. Apart from the above, the
AAT must hold a series of valid configuration states
(PCR values) for each IFC in order to be able to verify
the trust state of a host.

In a way, the AAT plays the role of a local trusted
third party. The process of verifying the host’s trust
level is called local attestation since it is similar to
remote attestation but does not require a network
communication channel because it is performed
locally (the AAT is attached to the host device). In a
AAT enabled CMAP, the mobile agents of the CMAP
are issued by trusted servers and are cryptographically
secured using specific keys. In that scenario, the
assorted keys of a CMPA agent are necessary if such
an agent is to be managed by an agent executor (an
IFC device). The keys, as proposed in (Hein & Toegl,
2009), are provided by the AAT through local attesta-
tion using the protocol of Figure 1.

The local attestation protocol uses a nonce to guar-
anty the freshness of the exchanged messages. Initially,
the IFC has to provide the AAT with an identification
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79 Trust Ensuring Crisis Management Hardware Module

of the platform it uses (platform id) and the key that
requires (key id). A random value is then provided by
to the IFC as a nonce. Then, the IFC configuration
along with the nonce are encrypted using the private
key of the IFC host and are sent under the name TPM
quote to the AAT. The AAT using the platform id and
key id retrieves from its memory the IFC host’s public
key and decrypts the TPM quote. In that way the AAT
can verify that the nonce is the one sent earlier. After
comparing the sent IFC configuration with the one
stored in its memory, the AAT can also verify if the
IFC is in a trusted state by powering on a green or red
light. In the first case, it prompts the user for a pass-
word (through the power on of a green light), and
upon correct retrieval it releases the requested agent
key. Note that the public key of the IFC is stored in
the IFC’s TPM while the public key of the IFC is
stored in the AAT’s secure memory. Neither key is
publicly known.

5. ATTACKS ON THE AAT
The AAT as described in (Hein & Toegl, 2009) is

protected from man-in-the-middle attacks (MITMA)
like the grandmaster postal chess problem. Also,
through the use of a random nonce for each run of the
protocol, replay attacks are difficult to be launched.
The AAT is considered tamper proof and EMC sealed
so that the operations inside this device cannot be
probed. However, successful attacks are feasible on the
IFC-AAT communication by listening to the commu-
nication channel. It can be assumed that an attacker is
able to monitor the channel between the two entities

(IFC-AAT) by implanting a monitor device in either the
IFC or the AAT or by monitoring the electromagnetic
(EMC) signal emission of the channel (Tanaka, 2008).
This scenario is perfectly possible if a legitimate user
acts in a malicious way, if a legitimate user is fooled into
accepting monitoring, or if an attacker gains possession
of an IFC, AAT device along with a user password (i.e.,
through means of social engineering). In all the above
cases, trusting computing cannot be applied to avoid
this attack since it is not an attack on the IFC device.

In the attack model described above an attacker can
easily gain possession of both the user password and
the agent keys. At first, the attacker does not tamper
with the IFC device but rather leaves the protocol to
unfold and monitor the channel locally. After one
successful authentication and key release through the
AAT, the attacker has knowledge of the user password
and the key. Then he or she can tamper with the IFC
device (the same device or a different one), run mali-
cious code on it, and program the device for attacks
on the CMAP. The device is not in a trusted state any-
more so when inserting the AAT in order to connect
to the CMAP for a second time, the key will not be
released, but the attacker no longer require the AAT to
have access to the key. He or she already has the key
and can gain access to the CMAP without the AAT
using an untrusted and malicious IFC.

Another problem of the AAT key agreement proto-
col is that the IFC by default is bound to consider the
AAT device trusted. The AAT does not need to prove
its identity in any part of the protocol. A malicious
device can impersonate an AAT as long as it follows
the AAT protocol and has a green and red light on it.
The rogue AAT does not contain any valid known
PCB values nor the public keys of any IFC host but it
does not need to. Following the key release protocol,
fooling the user into typing a legitimate password and
storing that password in its memory is enough for
compromising the whole system. If the rogue chip is
equipped with a wireless transmitter it can even send
the collected keys through the air to an unauthorized
user without detection.

6. PROPOSED IFC-AAT KEY 
RELEASE PROTOCOL

To address the problems presented in the previous
section, we can propose an IFC-AAT key release

FIGURE 1 The protocol of the IFC and AAT.

USER IFC AAT

key request

generate nonce

TPM Quote

nonce

platform id, key id

verify Quote

Trusted state

user notification
password id
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agent key
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release key
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A. P. Fournaris 80

protocol that can guaranty security even on an inse-
cure channel without adding significant overhead to
the whole process. The proposed protocol is presented
in Figure 2. The key release protocol is initiated when
the IFC requests a key from the AAT by providing the
platform id and the key id. As a response, the AAT
sends a nonce. Then, the IFC generates a TPM quote
using the provided nonce and the PCR values mea-
surement of its TPM. The TPM quote is signed using
the IFC private key. The AAT receives the TPM quote
and, using the associated to the IFC platform id public
key, verifies that the PCR values match the one’s
stored in its memory. The AAT then generates a Trust
note that includes an positive or negative message
analogous to the PCR values matching process and a
password id or a random number correspondingly.
The Trust note along with the nonce are encrypted
using the IFC’s public key and sent to the IFC. When
the message is received, the IFC decrypts it and reads
the Trust note. If the trust state is an acknowledge
message the IFC reads the password id and prompts
the user to insert the password. The password along
with the nonce is then encrypted using the IFC’s pri-
vate key and sent to the AAT for verification. The
AAT verifies the nonce and the password after
decrypting the provided message with the IFC’s public
key, encrypts the nonce with the agent key using the

IFC’s public key, and releases the result to the IFC.
The key is retrieved by decrypting the AAT message
with the IFC’s private key and by verifying the nonce.

In the proposed protocol of Figure 2 the message
exchange is protected from replay attacks through the
use of a random nonce generated by the AAT. This
nonce is also concatenated in every message that is
encrypted to ensure that this message is related to the
current run of the protocol. Also, after decryption, the
message is expected to include the nonce value thus
the message receiver can verify that the message is a
true encrypted value and not some garbage data
inserted into the channel. The channel is secured by
encrypting all messages including sensitive informa-
tion along with the nonce generated by the AAT.
Knowledge of the IFC’s public key by the AAT attests
that the hardware device connected to the IFC is a
legitimate AAT.

7. PROPOSED HARDWARE 
STRUCTURE FOR AN AAT

The hardware structure of the AAT can be deter-
mined by the functions that it must fulfill. A generic
AAT design was presented in (Hein & Toegl, 2009),
but details on this structure were not provided. The

FIGURE 2 The proposed IFC–AAT Key release protocol.

USER IFC AAT

key request

generate nonce

TPM Quote

nonce

platform id, key id

verify Quote

Trusted state

Verify Signature

Verify nonce

Encrypt password

password id

enter password
password

Decrypt and receive key

Verify nonce

Encrypt key

Sign (nonce,PCR )Pr.K_IFC values

Encr (nonce,password)Pr.K_IFC

Encr (nonce,Trust_note)Pub.K_IFC

Encr (nonce,agent key)Pub.K_IFC

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
H
E
A
L
-
L
i
n
k
 
C
o
n
s
o
r
t
i
u
m
]
 
A
t
:
 
1
5
:
1
0
 
7
 
M
a
y
 
2
0
1
0



81 Trust Ensuring Crisis Management Hardware Module

AAT due to its connection with a TPM has a TPM-like
structure and includes an RSA signature unit, a proces-
sor unit, a nonvolatile memory unit, a true random
number generator unit (TRNG), and a SHA1 hash
function unit. Our goal is to evaluate the AAT hard-
ware capabilities and propose a detailed description of
the AAT hardware design along with its related func-
tionality. Note that due to the enhancement of the
IFC-AAT key release protocol with encryption-decryp-
tion the AAT hardware functionality is different from
Hein & Toegl (2009).

The proposed hardware structure of an AAT chip is
shown in Figure 3. The system is structured around a
data/address bus where all the data values are trans-
fered for reading by a requesting unit of the AAT. This
bus also serves as an address bus connected to the
memory unit for a successful memory data reading.
There is also a bus connected to all the units of the
chip that is responsible for controlling those units.
Signals of this bus are in general managed from the
processor. The processor unit is responsible for con-
trolling the whole AAT system and realizing the key
release protocol by enabling, in regard to the protocol,
AAT units and performing operations that do not
require the involvement of other units (i.e., compari-
sons or memory search). For this task, the processor
has stored in its memory a microcode program imple-
menting the protocol and a series of data required by
the protocol. The SHA-1 unit is implementing the
SHA-1 hash function and the RSA encryption-
decryption unit is responsible for performing the
arithmetic operation of modular exponentiation
(memodn) as defined in RSA public key scheme (Menezes
et al., 2001). The SHA-1 unit has a data input/output
and a control signal indicating the beginning of a hash
function operation. The RSA unit has as inputs the
modulus n value (part of the RSA public key), the
message m to be encrypted-decrypted and the public

or private key e along with a control signal indicating
the beginning of a modular exponentiation. The
TRNG unit is connected to the data path through its
data output and has a control signal indicating the
beginning of a random number generation. The
NVRAM has a chip-select control signal and a read/
write control signal while connected to the data/
address bus in order to read the address and use it to
write or read the data values in or out of it. The system
has a universal clock and works in synchronous way.

In order to ensure a high security level, the RSA
keys used in the AAT should be of length 2048 bits.
As a result, the data related to the RSA encryption and
decryption will have similar bit length. However, there
is no feasible processing system able to operate with
buses of such bits. Therefore, the 2048 bit values are
broken into several blocks (to match the bus bit
length) and reconstructed inside the related AAT units
(the RSA encryption-decryption unit). The same prob-
lem exists with the SHA-1 unit that handles 160 bit
values and is solved in a similar way.

7.1. Proposed AAT Functionality
Based on the key release operation for which the

AAT was designed, the exact role of the various AAT
components into the realization of the protocol can
be determined. More analytically, there are the follow-
ing basic operations that can be identified from Figure 2:

1. platform-key identification
2. generate nonce
3. verify signature
4. verify PCR
5. generate trust note
6. exponentiate (encrypt and decrypt)

Each above operation is executed in the processor
unit with the collaboration of some of the other AAT
units. The SD interface is responsible for the AAT
communication with the external world by transform-
ing the values internal to the AAT into SD format
communication values and vice versa. The first mes-
sage that is received from the SD interface is the inter-
preted from the processor as a Platform-key
identification. So the processor reads the data that are
present in the data bus for a predetermined number of
clock cycles required by the SD interface in order to
complete the receiving of the platform-id and key-id.

FIGURE 3 The proposed hardware structure of the AAT.
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The transmitted values are compared with the values
stored inside the processor memory; the addresses of
the key, the premeditated PCR values, and the public
key of the IFC that are stored in the NVRAM are
retrieved. Those addresses are saved in the processor
register file and the platform - key identification opera-
tion is concluded.

The generate nonce operation is initiated when the
processor enables a control signal connected to the
TRNG unit marking the beginning of random number
generation. After a predefined number of clock cycles
the TRNG outcome reaches the data bus, is red from
the processor and saved in its memory.

The verify signature operation is initiated when the
IFC RSA signature is received from the SD interface
and stored in the processor. The whole process fol-
lows the RSA signature verification scheme (Menezes
et al., 2001). Initially, the processor sends the address
of the IFC public key to the address bus and enables
the chip select and read signal of the NVRAM. The
processor enables the control signal marked for
modular exponentiation in the RSA Encryption-
Decryption unit and supervises the transmission in
blocks of the IFC public key to the data bus and the
RSA Encryption-Decryption unit. Note that the
RSA Encryption-Decryption unit needs 3 values
before beginning the encryption/decryption opera-
tion. So, after receive of the public key (the public
key in RSA include the modulus n and the exponent
e) the processor puts in the data bus the signature to
be verified, in blocks. The RSA Encryption-Decryp-
tion unit is programmed to expect after a predeter-
mined number of clock cycles (required for
receiving the public key) the signature to be verified.
After the signature is received, the RSA Encryption-
Decryption unit decrypts the signature to get
the hash value of the signed values. In parallel, to
the decryption process, since the data bus is free, the
processor sends to the data bus the signed data and
enables the control signal of SHA-1 unit marking
the beginning of hash functioning. The whole signa-
ture verification operation is timed in such a fashion
that the hash function result reaches the data bus
and is saved in the processor memory when the RSA
decryption is concluded. When the processor reads
the data bus that has the RSA decryption result, it
makes a comparison between this value and the hash
function result. If the two values match, then the
processor stores the PCR values. The verify signature

operation is concluded and the verify PCR operation
may begin.

The verify PCR operation is initiating by retrieving
from the NVRAM the premeditated PCR values for
the IFC platform. This is done by putting the address
of those values in the address bus and enabling the
chip select and read control signals of the NVRAM.
The data that are put in the data bus and compared to
the ones stored in the processor after the verify signa-
ture operation. The outcome of the comparison deter-
mines the operation generate trust note that will follow.

The generate trust note operation employs the PCR
computation results to create an appropriate trust
note. When the PCR matching operation returns a
positive answer (the PCR values are the same), then
the password id is retrieved from the processor register
file using the key id and platform id values. Then, the
Trust note is created by concatenating the positive
answer (a predetermined known value) and the pass-
word id. If the PCR matching returns a negative
answer (the PCR values do not match), then the trust
note is created by concatenating the negative answer (a
predetermined known value) along with a random
number. The random number is generated by running
the generate nonce operation.

Apart from the above operations, the encrypt and
decrypt operations are also needed in order to fully
realize the proposed key release protocol. Each of the
two operations requires 3 input values in order to pro-
duce a result and then employ the same arithmetic
operation (modular exponentiation) to come up with
that result. Their realization is similar to signature veri-
fication operation. Initially, the processor sends the
address of the IFC public key (n, e) to the address bus
and enables the chip select and read signal of the
NVRAM. The processor enables the control signal
marked for modular exponentiation in the RSA
Encryption-Decryption unit and supervises the trans-
mission in blocks of the IFC public key to the data
bus and the RSA Encryption-Decryption unit. Then it
takes a similar transmission in blocks of the data to be
encrypted or decrypted. After a determined number of
clock cycles the RSA Encryption-Decryption unit puts
the encryption or decryption result to the data bus,
ready to be used by the processor. The encrypt and
decrypt operations share the same realization sequence
since they use the RSA Encryption-Decryption unit in
the same way. They even share the same public key in
the same key release session. Therefore, they can be
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generalized in one operation called exponentiate opera-
tion. Before encryption and after decryption, the
nonce should be added or verified to the associated
message. The nonce should be concatenated to the
message in any case.

8. CONCLUSIONS
Enhancing the security of mobile agents systems is

a very important factor, especially if such systems are
used in critical information systems for data gathering,
managing, and decision making. Crisis-disaster man-
agement systems are among the top targets for requir-
ing extreme security. Trusting computing offers a
strong security infrastructure based on a hardware
module called TPM that can achieve and enforce trust
between all the involved crisis management agencies.
However, this notion of trust cannot be fully guaran-
teed because a disaster situation is managed in condi-
tions that are harsh, and as a result important features
of a TPM chip, such as remote attestation, cannot be
always applied. The use of an additional AAT smart
card such as chip physically connected to a computer
system that is part of a crisis management system, is
needed (Wilhelm et al., 1999; Hein & Toegl, 2009).
We analyzed the ideas behind the AAT, describe pos-
sible successful attacks scenarios on the AAT, and ana-
lyze the problems behind the existing key release
mechanism of the AAT. As a result of this analysis, a
key release protocol is proposed that does not suffer
from the AAT problems. A feasible hardware structure
for the AAT, fully supporting the key release protocol,
is also proposed, and the functionality of this structure
on building blocks is analyzed. Finally, the basic oper-
ations of the AAT hardware structure are identified
and a realization sequence featuring the collaboration
of the various AAT hardware units is proposed.
Through the proposed approach for the AAT, we

manage to solve the problem of key reading from
eavesdropping the communication channel by
encrypting all exchanged sensitive data without add-
ing communication overhead to the protocol.
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