
1

DELIVERABLE D5.1

Functional specification of the Secure Docking
Module

Title of Contract Seamless Communication for Crisis Management

Acronym SECRICOM

Contract Number FP7-SEC-218123

Start date of the project 1st September 2008

Duration 44 months, until 30th April 2012

Date of preparation May 2009

Author(s) Daniel Hein, Peter Danner, Apostolos Fournaris,
Martin Liebl

Responsible of the deliverable TUG, Daniel Hein

Email daniel.hein@iaik.tugraz.at

Reviewed by: Cathy Walter, QinetiQ

Status of the Document: Final

Version 1.0

Dissemination level PU Public

2

Table of Contents

TABLE OF CONTENTS... 2

ABSTRACT ... 4

1. INTRODUCTION... 5

1.1 THE SECURE DOCKING MODULE... 5
1.2 MOTIVATION ... 5

1.2.1 Mobile Devices in a Messaging Communication Scenario... 6
1.2.2 Trusted Secure Agent Execution Environment Scenario Using PCs as Working Platform ... 6

2. TRUSTED COMPUTING AND VIRTUALIZATION ... 8

2.1 MEASURING THE HOST DEVICE ... 8
2.2 TRUSTED DOCKING STATION AND VIRTUALIZATION ... 9
2.3 LOCAL ATTESTATION .. 10

3. SECURE DOCKING MODULE INTERFACES... 12

3.1 THE SDM CLIENT INTERFACE .. 12
3.2 THE SDM ADMINISTRATION INTERFACE.. 12

3.2.1 The SDM Administration Host ..12
3.2.2 The SDM States ..13
3.2.3 The SDM Lifecycle..13
3.2.4 SDM Protection Mechanisms ..16
3.2.5 The SDM Data Model ..17

4. THE SDM COMMUNICATION PROTOCOLS ... 24

4.1 BASIC SESSION ESTABLISHMENT .. 24
4.2 ADMINISTRATION SESSION... 25
4.3 CLIENT SESSION ... 26

5. CLIENT COMMANDS... 28

5.1 CLIENT SESSION RELATED COMMANDS ... 28
5.1.1 InitiateSession...28
5.1.2 EstablishSession ..28
5.1.3 CloseSession...29

5.2 KEY AND CONFIGURATION RELATED COMMANDS ... 29
5.2.1 CreateTpmNonce ...29
5.2.2 GetAuthKey ...29
5.2.3 GetConfigAuthKey..29
5.2.4 GetConfigKey..30
5.2.5 VerifyConfig...30
5.2.6 VerifyConfigAuth ...31

5.3 MISCELLANEOUS COMMANDS ... 32
5.3.1 GetRandom...32

6. INITIALIZATION COMMANDS.. 33

6.1 INJECTIDENTITY .. 33
6.2 INJECTADMINHOST.. 33
6.3 DECOMISSIONSDM .. 34

3

7. ADMINISTRATIVE COMMANDS... 35

7.1 ADMINISTRATION SESSION RELATED COMMANDS .. 35
7.1.1 InitiateAdminSession..35
7.1.2 NegotiateAdminSession..35
7.1.3 EstablishAdminSession ...36
7.1.4 CloseAdminSession..36

7.2 SDM HOST RELATED COMMANDS ... 36
7.2.1 AddHost ...36
7.2.2 GetHost ..37
7.2.3 ListHosts ..37
7.2.4 RemoveHost...37
7.2.5 SetAdministrationHost..38

7.3 KEY RELATED COMMANDS ... 38
7.3.1 AddKey ..39
7.3.2 GetKey ...39
7.3.3 ListKeys ...40
7.3.4 RemoveKey..40

7.4 SETAUTHORIZATIONTOKEN .. 40
7.5 TRUSTED STATE RELATED COMMANDS ... 41

7.5.1 AddHostConfiguration ..41
7.5.2 ContainsHostConfiguration...42
7.5.3 ListHostConfigurations ...42
7.5.4 RemoveHostConfiguration ...42

8. HARDWARE REQUIREMENTS.. 44

8.1 TAMPER RESILIENCE.. 45
8.2 SDM SECURITY CONSIDERATIONS... 46
8.3 ON THE USE OF SHA-1... 47

9. GLOSSARY... 49

10. REFERENCES .. 50

APPENDIX A HIGH LEVEL JAVA LIBRARY DOCUMENTATION... 51

4

Abstract

The Secure Docking Module (SDM) is a single-chip security device that protects
information. The protected information is only released to a requesting client, if the client
can prove that it is in a trusted state. The determination of the trusted state and also its
verification by the SDM is based on Trusted Computing principles. If the SDM is used to
protect cryptographic key material, proof of possession of this key material allows
conclusions about the state of the key-holder.

This document provides a specification of the functional interface of the SDM based on
the information gathered in WP2 and the security requirements specified in WP4. It starts
out with a more detailed description of the SDM concept in Sections 1, 2 and 3detail the
logical interfaces of the SDM, introduces the concept of an administration host and
specifies the internal data organization of the SDM. The next section (section 4) describes
the session establishment protocol used to connect to the SDM and achieve an
encrypted and authenticated communication channel between a host device and the
SDM. The sections 5, 6, and 7 specify the commands that must be understood by the SDM
grouped by their relation to the logical interfaces of the SDM. Section 7 concludes this
functional specification of the SDM by considering the hardware requirements of the SDM
and related security topics. The appendix provides the documentation of the high level
Java interface of the SDM.

5

1. Introduction

1.1 The Secure Docking Module
The Secure Docking Module (SDM) protects cryptographic keys. In technical terms the
SDM is a key storage device with local attestation (the process of establishing its state)
verification capabilities. Conceptually, the SDM protects a small set of key pairs for
asymmetric cryptography, but in general is capable of protecting arbitrary data up to a
specific size. The SDM’s key protection facilities are a standard function, which could
already be implemented with today’s smart cards or hardware security modules. The SDM
extends this standard function by only releasing these keys to a host device if and only if
this host device is in a trusted state. This host device is called Trusted Docking Stations (TDS)
and is called local attestation (see Section 2.3). The relationship between SDM and TDS is
depicted in Figure 1.

Figure 1: The relationship between the Secure Docking Module and the Trusted Docking Station

A trusted state is a specific software configuration. This software configuration is measured
by using a Trusted Platform Module (TPM). The TPM is a special security chip providing
amongst other functionalities the protected capability of measuring the software
configuration of its host device. A TPM must be present in the TDS. The combination of a
SDM with a TDS is called a Secure Docking Station (SDS).

The idea of the SDM/TDS concept is that if a TDS is in a trusted state, it can be trusted to
adhere to a specific policy. A policy is a set of rules that constrains the behavior of a
device for all conceivable situations. This gives the TDS the freedom to execute any
program that can be run as part of a trusted state.

1.2 Motivation
In order to provide a secure communication infrastructure in accordance with the
requirements of the SECRICOM project, the particularities of the infrastructure must be
understood. Two main categories of communication devices are used – mobile devices,
and PCs or PC derivates. These devices are constructed for very different purposes. Mobile
devices have limited processing power, limited input (for example only number keys), and
limited battery power. PCs on the other hand have a constant power supply (via
connection to the main supply), various interfaces for input devices, memory card devices

6

and other kinds of extensions. To show how mobile devices and PCs are involved in the
communication two use cases are explained consecutively.

1.2.1 Mobile Devices in a Messaging Communication Scenario

Mobile devices normally do not have extra slots for smart cards. They also mostly do not
have wired Secure Elements and, even less, have a TPM. To be able to use a wide variety
of mobile devices, common security features must be utilized. Nearly every mobile device
has one or more slots to carry memory cards. The SDM will also have such a multi-purpose
memory card interface, thus it can be used with these mobile devices (Figure 2).
Credentials for applications and communication establishment are stored on the SDM
and released only under defined conditions following special release protocols (cf. section
4).

Figure 2: SECRICOM mobile application scenario

During incidents users do not have time to work with complex, time-consuming processes
and they must operate under difficult conditions. Mobile applications therefore must be
easy to use. Security has to be provided transparently via a SDM and the mobile devices
on their part. The remaining functionality that the user actively can use is its store for
credentials. Depending on the applications (and devices state(s)), in this scenario, users
are releasing keys through providing passwords by requesting the SDM.

1.2.2 Trusted Secure Agent Execution Environment Scenario Using PCs as Working
Platform

In environments where fixed infrastructure can be presumed, communication devices are
obliged to be equipped with a TPM and to utilize it. The benefit of these hardware
components is that they ensure the trusted state of a platform and provide the possibility
to bind software to the Secure Docking Stations depicted in Figure 3. In this scenario this
software is the Secure Agent Execution Environment (SAEE) running on the Secure Docking
Stations, which are part of the SECRICOM Agent Platform. This enables determination of
which agent is allowed to be executed on which specific SAEE in homogenous Agent
Environment installations, because it is possible to predetermine the agents for the

7

available Secure Docking Stations by binding them to TPM identities. The establishment
and utilization of trust is specified by the Trusted Computing Group and explained in
chapter 2.3. In this scenario, shown in Figure 3, credentials can be used automatically. For
this purpose the SAEE must communicate with the SDM and prove to it, that it is in a
trusted state. If the SDM successfully verifies the state of the Secure Docking Station
including its running SAEE, it will release the requested key material respectively
credentials. This allows for automated encryption processes, e.g. the encrypted
transmission of agents.

Figure 3: Agent communication scenario using SECRICOMs communication security

As one can see the SDM is a central component in SECRICOMs communications
infrastructure. It has to be maintained and prepared for use. Also its interfaces and
functionality have to be specified in great detail.

8

2. Trusted Computing and Virtualization

2.1 Measuring the Host Device
The TPM is part of the concept of Trusted Computing. Trusted Computing is driven by the
Trusted Computing Group and tries to achieve security through providing an automatic
means of establishing trust in a platform. Trusted Computing based on the TPM measures
the platform, in this case the SDM host device, by establishing a so-called Chain of Trust.

The Chain of Trust guarantees that every software component of the protected platform is
measured before it is executed. It is not possible to hide the execution of a software
component. The Chain of Trust is an uninterrupted chain of measurements starting at the
Core Root of Trust for Measurement. The Core Root of Trust for Measurement is either a
BIOS component or an authenticated code module. The Chain of Trust is built on the
principle of measuring before executing. A measurement is the SHA-1 hash of a
component and its relevant configuration. Measurements are stored in so-called Platform
Configuration Registers inside the TPM.

Figure 4 provides an illustrative example of the concept. For this example it is assumed that
the Core Root of Measurement is a part of the System BIOS. Also, the example has been
simplified and abstracts a few measuring steps for sake of simplicity

Figure 4: A sample Chain of Trust

At boot the Core Root of Trust for Measurement measures the System BIOS by computing
a SHA-1 hash of it. The measurement is stored in the TPM and the BIOS is then given control
of the platform. The BIOS performs its system initialization duties. After that it measures the
master boot record of the boot partition, stores the measurement in a Platform

9

Configuration Registers (PCR) and transferring control master boot record. The master
boot record performs the same procedure with the OS boot loader. This Chain of Trust is
then continued up until application level.

The TPM standard specifies that a TPM must provide at least 24 PCRs. This number is much
too small to contain a detailed measurement of all components of a system, but every
component must be measured, for the Chain of Trust concept to work. To solve this
problem a way to reuse PCR registers has to be found. Simply overwriting values in the
PCRs is out of the question, as this would allow software components to hide their
execution and thus break the Chain of Trust. This is solved by prohibiting direct writing to
the PCRs. PCRs can only be extended. The PCR Extend operation appends a new
measurement value to the value stored in a PCR and the result is hashed using the SHA-1
cryptographic hash function:

PCR_EXTEND(n, v): PCRN =SHA-1(PCRN||v),

where n is the number of the PCR to extend and v is a measurement value. Due to the
properties of a cryptographic hash function it is not possible to manipulate the Chain of
Trust without detection.

On the hardware level, depending on the Core Root of Trust, building a Chain of Trust
requires cooperation either between the TPM and the BIOS, or between the TPM, the
chipset and the Central Processing Unit (CPU). On the software level each software
component must adhere to the measure before execute paradigm.

2.2 Trusted Docking Station and Virtualization
The implementation of a Chain of Trust requires the cooperation of several hardware and
software components. The software components include various parts of the Operating
System (OS) of the platform. Thus, integrating the Chain of Trust into an existing OS
infrastructure requires numerous changes. Virtualization can all help alleviating this
problem. In addition it allows establishment of protected execution environments.

Virtualization provides an abstraction of a physical platform that is known as a Virtual
Machine. The term virtualization encompasses a variety of virtualization techniques. For
the purpose of this document we use the term to refer to a fully virtualized platform. A fully
virtualized platform provides two important capabilities:

• It abstracts the physical characteristics of physical platform

• It provides isolations of the Virtual Machines

The term Virtual Machine is also used in conjunction with the Java programming language
and the Java Runtime Environment. To avoid confusion a Virtual Machine in the context of
hardware virtualization will henceforth be called a compartment.

A hypervisor or Virtual Machine Monitor (VMM) virtualizes a physical platform and enables
the execution of isolated compartments. Isolation is basically achieved by granting each
compartment access to the CPU, memory and interrupts, whereas the hypervisor stays in

10

control of the MMU. A virtualized platform is illustrated by Figure 5. Each compartment runs
its own operating system and set of applications.

Figure 5: A schematic of a virtualized environment, where a hypervisor manages the operation of
several separated virtual machines.

Concerning the SDM concept a virtualized environment has two beneficial effects: It
facilitates platform state measurements by enabling the measurement of a complete
compartment and the isolation allows executing services in a trusted state next to less
trustworthy compartments.

The Chain of Trust for this virtualization based execution model requires measurement of
the hypervisor. The hypervisor in turn must measure a compartment image before
execution. To enable the trust decision made by the SDM, when the state of the virtualized
platform is reported to it, the trusted application compartment image must be immutable.
Thus, it is comparable to a CD/DVD-ROM image booted in a virtual machine. Mutable
data and variable configurations must be provided by another source, for example a
network share or a mounted hard disk image.

2.3 Local Attestation
The Chain of Trust ensures the accurate measurement of a platform. The benefit of this
knowledge arises when this state is reported to the SDM and the SDM releases a key. The
cryptographically secured process of providing this state information to a verifier (the
SDM) is called Attestation. In the Trusted Computing concept, verification of the
attestation information is handled by a powerful, trusted and networked entity with access
to a wide array of resources. This is called Remote Attestation, because it is done over a
network. The SDM enables Local Attestation. Thus, it can provide access to protected
information even if no Remote Attestation service is available, but the SDM is also much
more restricted both in computing power and in storage compared to a Remote
Attestation service.

The basic Local Attestation process which enables the release of a key is also called Key
Release Protocol and is illustrated in Figure 6. In order to release a key, the first step is for
the host to request it by sending the key identifier to the SDM. The SDM randomly

11

generates a nonce n, which ensures the freshness of the signed platform configuration
report generated by the host’s TPM in the next step of the protocol. The platform
configuration report contains the SHA-1 hash of a selected set of PCRs and is signed with a
so-called Attestation Identity Key (AIK). The SDM generated nonce n is also signed. This
platform configuration report is named TPM Quote. In the next step, the SDM proceeds to
verify the signature, the nonce n, and the actual platform configuration. If the platform
configuration is equal to a previously determined trusted state, the key is released.

Figure 6: The Key Release Protocol

12

3. Secure Docking Module Interfaces

The SDM provides two different logical interfaces. The first, the client interface, provides
the functionality required by an entity that uses the SDM. It consists of functions to verify
the state of a host device, retrieve keys and generate random numbers using the SDM’s
random number generator. The second is the administration interface and allows an
authorized entity to add, change and remove data protected by the SDM.

3.1 The SDM Client Interface
The client interface is made available through a client session with the SDM. For details on
the establishment of a client session see section 4.3. For the commands available in a
client session cf. to section 5.

3.2 The SDM Administration Interface
The administration interface is available during an administration session with the SDM.
Administration session establishment is described in section 4.2. The available commands
are enumerated in section 7. The SDM administration interface is considerable more
complex than the client interface and warrants a more detailed description. Central to
the administration concept of the SDM is the so-called Administration Host.

3.2.1 The SDM Administration Host

The SDM can only be administered by one entity. This entity is called Administration Host. It
is possible to change the Administration Host. The Administration Host can remove itself
and designate a new Administration Host. It is not possible to have more than one
Administration Host at the time, nor is it possible to distinguish between different
Administration Hosts.

The Administration Host can grant new entities client access to the SDM or revoke the
access of existing entities. It can also update the data associated with an existing entity.
The Administration Host can add new protected data to the SDM or remove existing
protected data (cryptographic keys) from the SDM. It can also read and modify the
protected data. The Administration Host specifies the protection mechanism for protected
data that is it determines under which conditions a client entity may retrieve specific
protected data from the SDM.

The Administration Host has full control over all data stored in the SDM; therefore the
Administration Host must be a TDS. Administration session establishment must ensure that
the Administration Host is in a trusted state. The Administration Host must be specified
before an SDM can be used. For this reason, Administration Host injection is an early step in
the SDM lifecycle.

13

3.2.2 The SDM States

The SDM from the time that it is fabricated to the end of its life, passes through a variety of
different states. Each state has unique characteristics that specify the functionality of the
SDM. The more important states are the following:

UNINITIALIZED: This is the state that characterizes the SDM directly after fabrication. In this
state the SDM doesn’t contain any information at all. Specifically it has no identity (unique
identifier), any cryptographic proof of its identity, or any cryptographic keys or related
hosts. Also, there is no administration host written inside the SDM. In this state the SDM
storage elements are totally blank. The only possible command that can be addressed to
the SDM is the command that inserts the unique identifier in the SDM.

PROGRAMMABLE: This state characterizes the SDM after the identity injection operation.
The SDM does not contain any information apart from its unique identifier and associated
cryptographic key. No other cryptographic keys or credential can be stored in the SDM
since the Administration Host is not specified in this state. The only possible command that
can be addressed to the SDM is the command that inserts the Administration Host in the
SDM.

READY: It is the state that characterizes the SDM after it is uniquely identified (unique
identifier) and an administrator host is assigned to it. At this state the SDM can be
connected to an administrator host and can be filled with the necessary host and keys
information along with the related credentials (TPM quote, Authorization Token). The SDM
in READY state is fully operational and the full repertoire of SDM commands can be
addressed to it.

3.2.3 The SDM Lifecycle

A freshly fabricated SDM is completely devoid of any information. More precisely a new
SDM has no identity (unique identifier) and no cryptographic proof of its identity. Also, no
administration host is specified.

The SDM Lifecycle is depicted in Figure 7. The first step in the SDM lifecycle is to inject the
SDM with its unique, cryptographically corroborated identity. This operation can only be
performed, when the SDM is in the UNINITIALIZED state. The successful execution of the Inject
Identity operation irrevocably changes the state of the SDM to PROGRAMMABLE. When the
SDM is in this state, it is possible to specify the Administration Host of the SDM. Once the
Inject Administration Host command successfully executes, the SDM is again irrevocably
set to the READY state.

14

Figure 7: The SDM Lifecycle

In the READY state the SDM accepts connections from a host; it is possible to establish a
client or an administrative session with the SDM. The commands that control the lifecycle
of the SDM are detailed in section 6.

Deployment Procedure of the Secure Docking Module
The aim of the deployment process is that emergency service workers and other involved
personnel, can get a SDM to be able to communicate to other parties using the
SECRICOM infrastructure. It is essential that all communication partners in the SECRICOM
network can rely on the security of the network and the trustworthiness of their
communication partners and their platforms, be it a mobile device, a PC, or a Laptop. To
determine the communication partners and to prevent misuse, a pre-prepared SDM is
given out to each person, which needs to communicate in the SECRICOM network. All for
this person necessary protected key material is stored on this SDM. Therefore, someone
must know the scope of operation for each participant and hence the composition of
credentials for his SDM. This is coordinated in the Command and Control (C&C) Centre.

Prerequisites
To prepare and make an SDM suitable for appliance some persons and entities must work
together. They must be available or be physically present for the start of the SDM
Lifecycle:

• Command and Control Centre (C&C Centre).

This institution is the organizational unit that cares about the total amount of SDMs
and the identification of users and their facilities (this can be done electronically as
well as paper based). The C&C Centre is responsible for supervision of the rollout
and evaluation processes concerning the SDM Start of Lifecycle phase and also
takes care about the physical revocation of SDMs.

• Blank SDMs (are a physical and logistical part of the C&C Centre)

Empty SDMs or SDMs with suitable Administration Hosts are needed (they must be
changeable at the C&C Centre or any institution authorized by the C&C Centre
institution).

• Administration hosts

15

Administration Hosts are operated by authorized persons. For the description of and
requirements to Administration Hosts see section 3.2.1.

• Evaluated States for evaluated machines and key material to protect

To bind credentials to certain platform configuration states, evaluation entities have
to inspect the computers and the used and running software. The SDM implements
an automatic process to enforce the trust decisions made by these qualified
entities. A suitable trustworthy software bundle could be prepared beforehand, by
a qualified party. This qualified party is responsible for choosing software that
adheres to the required policies. Next an entity measures this software using the
TPM in the platform, thus identifying the exact configuration for this specific
platform, the trusted state of the platform. This platform configuration is mapped
into the PCRs of the platforms TPM. The term platform configuration here
encompasses all the software on a platform plus the actual configuration of this
software. For new platforms, this must be done before connection to the
infrastructure. Another way to protect key material and other credentials is to use
only user-passwords. The prospective user of the SDM could provide his own
password during the rollout process. This is less secure, but does not require a TPM. A
third way of application of data is to inject a predefined set of data, e.g. each SDM
is equipped with the same base information.

Start of the Lifecycle of an SDM
1) SDM and administration host have to be brought together (put SDM into

Administration Host)

2) All necessary data for the SDM have to be gathered. Platform configurations have
to be generated and sets of data have to be bound to them. The result should be
a complete SDM data structure (hosts, keys, trusted platform configuration, and
passwords) which can be injected in step 4.

3) Initialization Process of the SDM as described at the beginning of this section.
Resulting in the READY state. This includes the personalization through application of
the unique identity for the SDM.

4) Injection of the SDM data structure prepared in step 2. This includes the hosts, their
associated key material, and key protection data, such as the trusted platform
states and/or a password.

5) Registering a user to the SDM (paper based or electronically), maybe provision of
the password(s) by the user. Hand out of the SDM.

To get a picture of how such a rollout could take place, an example for an SDM-Rollout is
given next: An expert wants to join the to help in case of an emergency by taking
snapshots of the environment. He goes to the C&C Centre where he wants to get
equipment. His identity will be determined and mapped to an SDM, and therefore bound
to the SDM. He comes with his own software he wants to use and gives it to the qualified
administrators. The qualified administrators are setting up a clean system with predefined

16

and user software. The predefined software set also covers the communication software,
which every user is expected to use. Then the administrators attest the platform
configuration and create the data structure organization of the SDM. Sequentially each
credential will then be stored on the SDM bound to the obtained platform configuration.
Finally the user types in his password for the unbound credentials he gets and receives
SDM and the prepared Laptop. He then is ready in case of an emergency to swarm out
and contribute his part of help.

End of the Lifecycle of an SDM
The end of the Lifecycle of an SDM is the result of the predetermined decommissioning
process. To decommission an SDM all its data is stripped off including its unique
identification. This is necessary, because if an SDM is revoked, it could not be reused
otherwise. The decommissioning process is as follows:

1) The SDM must be brought to and put in its Administration Host

2) All user data and key material will be safely removed by an administration entity.
For each data structure the Administration Host has to get the list of credentials and
sequentially delete the obtained list entries.

3) With a reset command, which combines three phases - the extinction of the
identity and the master key pair of the SDM as well as the Administration host,
together with the exchange of the state of the SDM to UNINITIALIZED – the lifecycle of
the SDM is terminated.

4) Now the SDM is in the UNINITIALIZED State and ready for reuse

The C&C Centre knows about the identities of its SDMs and therefore can exactly
determine if, and when a revoked unique identity can be reused within a new start of the
lifecycle process of an SDM. Identity-recycling makes sense at the latest if a new incident
occurs and an all-encompassing SDM rollout process starts.

3.2.4 SDM Protection Mechanisms

The requirements-conditions that a host must fulfill in order for the SDM to release its
protected keys related to this host constitute the SDM protection mechanism. Each
protection mechanism is characterized by the type of credentials (certificates) that a host
can provide to the SDM to prove its identity and if it can be trusted or not. Since the hosts
of an SDM are either equipped with a TPM (TDS systems) or not equipped with a TPM (SiFD
systems) there can be identified three different possible credentials and therefore three
different protection mechanisms.

Platform Configuration Protected mechanism (PCP): In this mechanism, the credential
provided to the SDM by the host is a TPM quote. The TPM quote is a valid platform
configuration of the host and can indicate whether or not the host is in a trusted state. The
TPM quote value provided by the host, is compared to the value, associated with the
requested key and host, stored in the SDM and if the two values match then the key is
released. In order for this mechanism to be possible the host must be equipped with a TPM
chip.

17

Authorization Token Protected mechanism (ATP): In this mechanism, the credential
provided to the SDM by the host is an authentication token (password) that is given by the
host’s user. The authentication token is host related and constitutes the only measurement
indicating that a host is authorized to receive an SDM key associated with it. The
authentication token value provided by the host, is compared to the value stored in the
SDM and if the two values match then the key is released. No TPM chip is required for the
key release operation of this protection mechanism. The mechanism should only be
utilized when the TPM use is prohibited or a TPM chip is not present on a host.

Authorized Platform Configuration Protected mechanism (APCP): This mechanism is a
combination of PCP and ATP. The credential provided to the SDM by the host is both the
host’s valid platform configuration and an authentication token given by the host user. In
APCP mechanism the authentication token value and platform configuration provided by
the host, are compared to the values associated with the requested key and host, stored
in the SDM and if the values match then the key is released. So, in order to have access to
the SDM key materials, the host has to be in a trusted state and be able to provide
adequate authentication of itself (through the authentication token). In order for this
mechanism to be possible the host must be equipped with a TPM chip. APCP constitutes
the strongest key protection mechanism among the three approaches and should be
used when administered when the required security level is high, like in administration host
keys.

3.2.5 The SDM Data Model

The SDM data model groups protected information (cryptographic keys) by the entities
that are allowed to access the protected information, so-called hosts. Figure 8 illustrates
the SDM data model. The basic data primitives used in the SDM are detailed in Table 1.

18

Figure 8: The SDM data model

19

Data Type Size
[Bytes]

Description

Unique Identifier 20 Unique Identifiers are used to identify different
SDMs, SDM hosts and protected keys associated
with a specific SDM host. SDM and SDM Host
identifiers should be globally unique within the
SECRICOM infrastructure. Key identifiers must be
unique for keys associated with a specific host.

RSA Public Key 512 The SDM requires RSA Public Keys for SDM host
authentication and TPM Quote signature
verification. Both keys are logically part of a SDM
host data structure and are always 2048-bit RSA
public keys.

RSA Private Key 512 The SDM uses only one RSA Private Key. This is the
private part of the SDM Authentication Key (SAK)
which is used during host to SDM session
establishment. It is a 2048-bit RSA private key.

Key Material 1024 The primary task of the SDM is to protect keys and
credentials. Key material is simply a byte array with
a maximum size of 1024 bytes. This key material is
only released if the host can prove that it is in a
specific trusted state, or if it can supply an
authorization token, or both.

Valid Platform
Configuration

20 Also called Host Configuration or simply platform
configuration. Keys that use the Platform
Configuration Protected or Authorized Platform
Configuration Protected key protection
mechanism are only released to the host if it is in a
trusted state. A trusted state is characterized by a
20-byte SHA-1 hash. A Valid Platform Configuration
is just such a SHA-1 hash.

Authorization Token 20 Authorization Tokens (passwords) grant access to
keys which are protected by the Authorization
Token Protected or Authorized Platform
Configuration Protected protection mechanisms.
An authorization token is an array of bytes with a
maximum length of 20.

Random Bytes 512 A number of bytes generated using the random
number generator in the SDM. The SDM can
generate a maximum of 512 bytes or 4096 bits one

20

Table 1: Primitive data types of the SDM

go.

Key Protection
Mechanism

1 Either Platform Configuration Protected,
Authorization Token Protected, Authorized
Platform Configuration Protected.

21

SDM Host
Name Type Remarks

Unique host identifier Unique Identifier Must be globally unique.

Host Authentication Key
(HAK)

RSA Public Key

Attestation Identity Key
(AIK)

RSA Public Key Optional

A host is a data structure that is composed of a unique identifier and a Host
Authentication Key (HAK) and may have an associated Attestation Identity Key (AIK). The
HAK and the AIK are both 2048-bit RSA Public Keys.

The HAK is necessary to establish an authenticated and encrypted session between the
SDM and a specific host (cf. section 4). The AIK is the public part of the key used by a
host’s TPM to sign its TPM Quotes. If a host has a TPM and the host wants to access keys
that are only available if the host is in a specific trusted state, this AIK must be set.

In this context the term host might be a bit confusing. A host is simply any entity that has
access to the private part of the HAK and which has a corresponding host entry in an
SDM. A host is capable of establishing a client session with the SDM and has associated
keys which can be retrieved during such a session.

In an administration session the Administration Host may add new hosts, update the HAK
and AIK of existing hosts and can remove hosts from the SDM. Hosts can only be removed
from the SDM, if they are no longer associated with any keys; that is all keys of a host must
be deleted before the host itself can be deleted. The Administration Host can also add
new keys to a host, update the data of existing keys of a host, under certain condition
remove a key and list all keys associated with a host.

22

SDM Keys
Name Type Remarks

Key identifier Unique Identifier Must be unique within the context
of the host the key is associated
with.

Protection mechanism
type

Key Protection
Mechanism

Key data Key Material

Password Authorization Token Only exists if the key uses the
Authorization Token Protected or
Authorized Platform Configuration
Protected protection mechanisms.

A SDM protected key is always associated with a host and is composed of at least three
elements: A Unique Identifier, a Key Protection Mechanism, the actual Key Material, and
under certain conditions an Authorization Token. The key identifier must be unique within
the context of the host. The key data is the actual data protected by the SDM.

The protection mechanism specifies under which conditions a key is released to the host.

• The ATP protection mechanism releases a key if the correct authorization token
(password) is provided.

• The PCP protection mechanism releases a key if the host is a trusted state.

• The APCP protection mechanism requires both an authorization token and that the
host is in a trusted state.

If the key uses the ATP or APCP protection mechanism the key also contains the
Authorization Token. In case the key is protected by the PCP or APCP protection
mechanism the key should be associated with a set of trusted states. If a PCP or APCP
protected key is not associated with a trusted state, it must not be possible for a client to
retrieve the key.

In an administration session the Administration Host can add, read and modify and
remove keys. Keys must always be associated with a host. Keys can only be removed if
they contain no more Valid Platform Configurations (trusted states). In the case where the
key uses the ATP or APCP protection mechanism the Administration Host may set the
Authorization Token of the Key. In the case where the key is protected by the PCP or
ACPC mechanisms the Administration Host can list all Valid Platform Configurations
associated with the key, add new Valid Platform Configurations, and remove Valid
Platform Configurations. It is not possible to directly modify a Valid Platform Configuration,
but this functionality can be implemented using remove and add commands.

23

Administration Host
Name Type Remarks

Unique host identifier Unique Identifier

Host Authentication Key
(HAK)

RSA Public Key

Attestation Identity Key
(AIK)

RSA Public Key Mandatory

Administration
Configuration

Valid Host Configuration Trusted state

The SDM administration host data structure is a special case of an SDM host. The SDM
administration host is composed of a Unique Identifier, two RSA Public Keys, and a Valid
Platform Configuration. For SDM administration host both the HAK and the AIK must be set,
because host platform attestation is an integral part of the administration session
establishment protocol. The administration configuration is the trusted state in which an
Administration Host must be able to administer the SDM.

In an administration session the Administration Host may update the SDM administration
host data structure and thus set a new Administration Host, or update the trusted state of
the Administration Host. Special care must be taken when changing values associated
with the SDM administration host. If the SDM administration host data structure contains
values that are not achievable, the SDM cannot be administered any more.

24

4. The SDM communication protocols

The SDM is physically connected to a host computing device. This host computing device
or simply host is a computing device that provides a compatible hardware interface and
implements the SDM communication protocol. A host with a TPM and a measured
Hypervisor that is capable of providing a measured and isolated execution environment is
called Trusted Docking Station (TDS). Currently only one manufacturer ships its TPMs with
an Endorsement Key (EK) certificate, therefore only hosts equipped with an Infineon TPM
can be TDS. A TDS can host several isolated execution environments, each a potential
host to the SDM. The SDM must also provide services to devices that are not equipped with
a TPM. The term host or host computing device is applicable for all these devices.

The SDM must provide a session based communication protocol in order to allow
communication between a host and the SDM. The SDM must allow exactly one active
session between itself and a host device at any given time. It is possible for different hosts
to communicate with the SDM sequentially after each other, but not concurrently.
According to the “Security requirements and specification for docking module (D4.1)” the
communication between the SDM and a host must be authenticated and protected
against eavesdropping.

4.1 Basic session establishment
The basic protocol flow to establish authentication and a shared secret is depicted in
Figure 9. The protocol is based on the Needham, Schroeder & Lowe protocol. The terms
SAK and HAK in the following protocol descriptions refer to the SDM Authentication Key
(SAK) and the Host Authentication Key (HAK). Both are 2048-bit RSA key pairs. SAKPub and
HAKPub denote the public part of the respective key pair. The protocol exchanges two
random numbers which must be used only once. Such numbers are called nonce’s. The
size of the nonce guarantees a very high probability that the random number generator
will not generate a random number twice, under the assumption that a proper random
number generator is being used. The random number generator must therefore be
cryptographically secure.

Name Type Description

NHost/NSDM/NTDS 16-byte nonce Random numbers that must only be used
once, used for symmetric key derivation

IHost/ISDM/ITDS 20-byte identifier Unique identifiers of the hosts and SDMs

IV 20-byte nonce Initialization Vector to be used with the AES
CBC-mode encryption/decryption

NTPM 20-byte nonce Nonce generated by the SDM and used by
the TPM in a Quote operation

SAKPub 2048-bit RSA public Public part of the SDM Authentication Key

25

key

HAKPub 2048-bit RSA public
key

Public part of the Host Authentication Key

k 16-byte AES key Derived from NHost and NSDM

Figure 9: Authentication and secret exchange protocol based on the Needham, Schroeder & Lowe
protocol

4.2 Administration session
The SDM provides two different services to the host. The first is the client interface which
allows using the SDM key protection & release facilities. The second interface is the SDM
administration interfaces which grants access to the setup and maintenance capabilities
of the SDM.

As an administration session allows to change the mechanisms that govern key release it is
evident that it must be protected against unauthorized access. Therefore, the SDM must
mandate that the host which administrates it is in a well defined, previously specified state.
This is achieved by using the same mechanism that governs key release. The protocol that
establishes an administration session with the SDM is illustrated by Figure 10.

The administration interface can only be used by a TDS. The Host Authentication Key of
the TDS must be exceedingly well protected, because the administration host has full
access to all information stored inside the SDM.

26

Figure 10: Administration session establishment protocol

4.3 Client Session
The primary focus of an SDM client session is to request and receive protected key
material from the SDM. Keys may be protected by three different mechanisms. The first
protection mechanism is based on an authorization token (password). If the client can
specify the authorization token, the key is released to the client. The second mechanism is
based on the host platform state. Only if the host platform state is equivalent to one of a
set of previously specified states, the SDM key will be released. The last protection
mechanism combines both former mechanisms: A key is only released if the host can
provide both an authorization token and an attested platform configuration report which
can certify that it is in a valid state.

A client session allows requesting several keys consecutively in addition to using the other
capabilities the SDM provides (random number generator). The protection mechanism is
specific to the keys. As the SDM must also support devices that are not equipped with a
TPM it is not feasible to mandate platform attestation during establishment of a client
session. The client session establishment process is shown in.

27

Figure 11: Client session establishment protocol

28

5. Client Commands

5.1 Client Session Related Commands

5.1.1 InitiateSession

InitiateSession indicates that a host wants to initiate a client session with the SDM. In a
client session the host can query key information and test if its current platform
configuration is valid.

The InitiateSession command is the first message in the client session establishment
protocol. It sends the host principal, which uniquely identifies the host, and a host nonce
to the SDM. The host nonce must be randomly generated and should not have been used
for the same purpose before.

Command Structure
Name Type Description
Comman
d

byte INITIATE_SESSION

HostID SdmIdentifier The globally unique identifier of the host that wants to initiate
a client session with the SDM.

HostNonc
e

byte[16] A random number (nonce) generated by the host. The whole
InitiateSession command is encrypted using the public
part of the SDM Authentication Key. Thus, the SDM, by being
able to decrypt the request and sending the random number
back to the host, proofs that it possesses the private part of
the SDM Authentication Key and thus authenticates itself.

5.1.2 EstablishSession

EstablishSession is the second SDM command in the client session establishment
protocol and should establish the authenticity of the host. The EstablishSession
command is encrypted using the public part of the SDM Authentication Key.

In an EstablishSession session command the host sends the SDM nonce back to the
SDM. The SDM nonce is generated during the InitiateSession command and
encrypted using the public key of the indicated host. Thus, the SDM knows that the host
has access to the private part of the encryption key if the host can send back the nonce.

Command Structure
Name Type Description
Comman
d

byte ESTABLISH_SESSION

SDMNonc
e

byte[16] A random number generated by the SDM and sent to the host as
part of the response to the InitiateSession command. By
sending back this number to the SDM as part of the
EstablishSession command the host proofs that it possesses the

29

private part of a specific Host Authentication Key and thus
authenticates itself.

5.1.3 CloseSession

CloseSession terminates an existing client session with the SDM. The SDM must be in a
client session for this command to work.

Command Structure
Name Type Description
Command byte CLOSE_SESSION

5.2 Key and Configuration Related Commands

5.2.1 CreateTpmNonce

CreateTpmNonce prompts the SDM to create a 20 byte nonce that must be used for a TPM
Quote which is send to the SDM as part of a key release or platform state verification
command.

Each SDM capability that relies on verifying the host devices state requires a TPM Quote of
the host platform. To ensure the freshness of the TPM Quote the TPM Quote command
allows for supplying 20 bytes of external data. This nonce must be created by the entity
that relies on the TPM Quote. In this case this entity is the SDM.

Command Structure
Name Type Description
Command byte CREATE_NONCE

5.2.2 GetAuthKey

GetAuthKey retrieves an authorization token protected key from the SDM. The SDM
provides three different protection mechanisms. The Authorization Token Protected key
protection mechanism releases a key only if the correct SdmToken, that is a password, is
specified.

Command Structure
Name Type Description
Comman
d

byte GET_KEY_AUTH

HostID SdmIdentifier The globally unique identifier of the host.
KeyID SdmIdentifier The key identifier. It must be unique per host.
AuthToken SdmToken The actual authorization token that unlocks the protected

key.

5.2.3 GetConfigAuthKey

GetConfigAuthKey retrieves a platform configuration and authorization token protected
key from the SDM. The SDM provides three different protection mechanisms. The APCP key

30

protection mechanism releases a key only if the platform can provide both an attested
platform configuration report which certifies its valid state and the correct authorization
token (password). This command is part of the SDM client interface.

Retrieving a key which is protected by a set of valid platform configurations is a two step
process. First the client must request a nonce which it must then proceed to use in the TPM
Quote operation that certifies the platform state. This TPM Quote can then be used with
the next key release function to obtain a configuration protected key.

Command Structure
Name Type Description
Comman
d

byte GET_KEY_CONFIG_AUTH

HostID SdmIdentifier The globally unique identifier of the host.
KeyID SdmIdentifier The key identifier. It must be unique per host.
TPM
Quote

TpmQuote The TPM Quote that certifies the valid state of the
platform.

AuthToken SdmToken The actual authorization token that unlocks the
protected key.

5.2.4 GetConfigKey

GetConfigKey retrieves a key that is protected by a set of valid platform configurations.
The SDM provides three different protection mechanisms. The PCP key protection
mechanism releases a key only if the platform can certify its trusted state. This command is
part of the SDM client interface.

Retrieving a key which is protected by a set of valid platform configurations is a two step
process. First the client must request a nonce which it must then proceed to use in the TPM
Quote operation that certifies the platform state. This TPM Quote can then be used with
the next key release function to obtain a configuration protected key.

Command Structure
Name Type Description
Comman
d

byte GET_KEY_CONFIG

HostID SdmIdentifier The globally unique identifier of the host.
KeyID SdmIdentifier The key identifier. It must be unique per host.
TPM
Quote

TpmQuote The TPM Quote that certifies the valid state of the
platform.

5.2.5 VerifyConfig

VerifyConfig tests if the host is in a trusted state that could affect the release of a
specific key that is protected by a set of valid platform configurations. The SDM provides
three different protection mechanisms. The PCP key protection mechanism releases a key
only if the platform can certify its trusted state. This command is part of the SDM client
interface.

31

Verifying the trusted state of the host platform by comparing its platform configuration
with a set of valid platform configurations is a two step process. First the client must request
a nonce which it must then proceed to use in the TPM Quote operation that certifies the
platform state. This TPM Quote can then be used with the next verification request.

Command Structure
Name Type Description
Comman
d

byte VERIFY_CONFIG

HostID SdmIdentifier The globally unique identifier of the host.
KeyID SdmIdentifier The key identifier. It must be unique per host. Valid platform

configurations are always associated with specific keys. It is
therefore necessary to specify host identifier and key
identifier to uniquely identify the key.

TPM
Quote

TpmQuote The TPM Quote that certifies the trusted state of the
platform.

5.2.6 VerifyConfigAuth

VerifyConfigAuth tests if the host is in a trusted state and can provide an authorization
token that could affect the release of a specific key. The SDM provides three different
protection mechanisms. The APCP key protection mechanism releases a key only if the
platform can prove its valid configuration and can provide the correct authorization token
(password). This command is part of the SDM client interface.

Verifying the trusted state of the host platform by comparing its platform configuration
with a set of valid platform configurations is a two step process. First the client must request
a nonce that it must then proceed to use in the TPM Quote operation that certifies the
platform state. This TPM Quote can then be used with the next verification request.

Command Structure
Name Type Description
Comman
d

byte VERIFY_CONFIG_AUTH

HostID SdmIdentifier The globally unique identifier of the host.
KeyID SdmIdentifier The key identifier. It must be unique per host. Valid platform

configurations are always associated with specific keys. It is
therefore necessary to specify host identifier and key
identifier to uniquely identify the key.

TPM
Quote

TpmQuote The TPM Quote that certifies the valid configuration
(trusted state) of the platform.

AuthToke
n

SdmToken The authorization token that together with the trusted state
of the platform would unlock the protected key.

32

5.3 Miscellaneous Commands

5.3.1 GetRandom

GetRandom requests a number of random bytes from the SDM's hardware true random
number generator. The number is limited to 4096 bits (512 bytes). This command is part of
the client interface of the SDM.

Command Structure
Name Type Description
Comma
nd

byte GET_RANDOM

Number int The number of bytes that should be generated by the SDM. The
number must be between 1 and 512.

33

6. Initialization Commands

6.1 InjectIdentity
InjectIdentity is used on freshly fabricated SDMs to inject them with a unique identifier
and a unique identity key. This is the first step in the SDM life cycle. This command gives the
SDM its identity. The second step is to set an administration host using the
InjectAdminHost. The third step is to use the administration interface to configure the
SDM.

InjectIdentity sets the unique identifier of the SDM and the unique SDM Authentication
Key (SAK). The SDM Authentication Key is a 2048-bit RSA key-pair that is used to
authenticate the SDM. The InjectIdentity process is not protected by an
authenticated and encrypted session, as at that point the SDM does not possess any
information that would allow such protection mechanisms.

This command will only be accepted by the SDM if it is in the UNINITIALIZED state. This is
the first command that must be called on a new SDM.

Command Structure
Name Type Description
Comman
d

byte INJECT_IDENTITY

SDMID SdmIdentifier The globally unique identifier of the SDM.
SAK
modulus

byte[256] The modulus of the SDM Authentication Key. The SDM
Authentication Key is a 2048-bit RSA public key-pair, where
the private key is only known to the SDM. The SDM requires
this key-pair for authentication.

SAK
public
exponent

byte[256] The public exponent of the SDM Authentication Key.

SAK
private
exponent

byte[256] The private exponent of the SDM Authentication Key.

6.2 InjectAdminHost
InjectAdminHost sets the administration host of the SDM. This command is the second
command in the SDM life cycle. When an SDM is freshly fabricated the InjectIdentity
command is issued to set the unique identifier and the SDM Authentication Key of the
SDM. The second step is to specify an administration host. The administration host is a
special SDM host that is allowed to add new hosts, new protected material, and so on.
The initial administration host is set using this InjectAdminHost command.

InjectAdminHost sets the unique identifier, the public part of the Host Authentication
Key, the public part of the Attestation Identity Key and a single trusted state of the
administration host. The InjectAdminHost process is not protected by an authenticated

34

and encrypted session, as at that point the SDM does not possess any information that
would allow such protection mechanisms.

This command will only be accepted by the SDM if it is in the PROGRAMMABLE state. This
command must be called after the InjectIdentity command.

Command Structure
Name Type Description
Comman
d

byte INJECT_ADMIN_HOST

HostID SdmIdentifier The globally unique identifier of the administration
host.

HAK
modulus

byte[256] The modulus of the public part of the Host
Authentication Key. The Host Authentication Key is a
RSA public key pair, where the private key is only
known to the SDM host. The SDM requires the public
key for administration session authentication.

HAK
public
exponent

byte[256] The public exponent of the public part of the Host
Authentication Key.

AIK
modulus

byte[256] The modulus of the public part of the Attestation
Identity Key. The private part of the Attestation
Identity Key is used by the administration host's TPM to
sign the platform configuration report (TPM Quote)
which is a strict requirement of the administration
session establishment protocol.

AIK public
exponent

byte[256] The public exponent of the public part of the
Attestation Identity Key.

HostConf HostConfiguration The valid configuration (trusted state) the
administration host must be in to administer the SDM.

6.3 DecomissionSdm
Decomissions the SDM. This command can only be issued during an administration session.
It clears the administration host data, deletes the unique identity of the SDM, and
immediately closes the current administration session. A prerequisite for this command is
that all protected data has been removed, i.e. the SDM is “empty”.

Command Structure
Name Type Description

Comman
d

byte DECOMISSION_SDM

35

7. Administrative Commands

7.1 Administration Session Related Commands

7.1.1 InitiateAdminSession

InitiateAdminSession indicates to the SDM that the host wants to initiate an
administration session with the SDM. An administration session enables the host to program
new data, and to update and remove old keys and valid configurations of the SDM. Only
hosts which are in the valid platform configuration that was specified using the
InjectAdminHost command are allowed to program the SDM. Only one concurrent
session with the SDM is possible, be it administrative or a client session.

Command Structure
Name Type Description
Comman
d

byte INITIATE_ADMIN_SESSION

HostID SdmIdentifier The globally unique identifier of the host that wants to
initiate an administration session with the SDM.

HostNonc
e

byte[16] A random number (nonce) generated by the host. The
whole InitiateAdminSession command is encrypted
using the public part of the SDM Authentication Key. Thus,
the SDM, by being able to decrypt the request and
sending the random number back to the host, proofs that it
possess the private part of the SDM Authentication Key and
thus authenticates itself.

7.1.2 NegotiateAdminSession

NegotiateAdminSession is the second SDM command in the administration session
establishment protocol and should establish the authenticity of the host.

In a NegotiateAdminSession command the host sends the SDM nonce back to the SDM.
The SDM nonce is generated during the InitiateAdminSession command and
encrypted using the public key of the indicated host. Thus, the SDM knows that the host
has access to the private part of the encryption key if the host can send back the nonce.

Command Structure
Name Type Description
Comman
d

byte NEGOTIATE_ADMIN_SESSION

SDMNonc
e

byte[16] A random number generated by the SDM and sent to the host as
part of the response to the InitiateAdminSession command.
By sending back this number to the SDM as part of the
NegotiateAdminSession command the host proofs that it
possesses the private part of a specific Host Authentication Key
and thus authenticates itself.

36

7.1.3 EstablishAdminSession

EstablishAdminSession is the final step in the administration session establishment
protocol of the SDM. An EstablishAdminSession command sends a signed platform
configuration report, a so-called TPM quote to the SDM. The TPM Quote includes a SDM
generated nonce that was previously sent to the host to be included in the TPM quote.
This step should proof to the SDM that the host platform is in a valid configuration (trusted
state)

Command Structure
Name Type Description
Comman
d

byte ESTABLISH_ADMIN_SESSION

TPMQuot
e

TpmQuote The platform configuration report, which includes the
platform configuration and an SDM generated nonce and
is signed with a specific Attestation Identity Key.

7.1.4 CloseAdminSession

CloseAdminSession terminates an existing administration session with the SDM. The SDM
must be in an administration session for this command to work.

Command Structure
Name Type Description
Comman
d

byte CLOSE_ADMIN_SESSION

7.2 SDM Host Related Commands
A host is the SDM representation of a platform that wants to use the services of an SDM. A
host object consists of a unique identifier, a Host Authentication Key (HAK), and an
Attestation Identity Key (AIK). The unique identifier must be unique for all hosts that are
part of the SDM protected infrastructure, it should be globally unique. The HAK is used to
authenticate a session between a host and the SDM. The AIK is used by the host's TPM to
sign a platform report. A host manages SDM protected keys; that is an SDM protected key
is always associated with a host.

7.2.1 AddHost

AddHost either adds a new host to the SDM or updates an existing host in the SDM with
new information.

Command Structure
Name Type Description
Comman
d

byte ADD_HOST

HostID SdmIdentifier The globally unique identifier of the host.

37

HAK
modulus

byte[256] The modulus of the public part of the Host Authentication
Key. The Host Authentication Key is a RSA public key pair,
where the private key is only known to the SDM host. The
SDM requires the public key for session authentication.

HAK
public
exponent

byte[256] The public exponent of the public part of the Host
Authentication Key.

AIK
modulus

byte[256] The modulus of the public part of the Attestation Identity
Key. The private part of the Attestation Identity Key is used
by the host's TPM to sign the platform configuration report
(TPM Quote). In order to release a Platform Configuration
Protected key the SDM must verify these TPM Quotes and
therefore requires the public part of the AIK.

AIK
public
exponent

byte[256] The public exponent of the public part of the Attestation
Identity Key.

7.2.2 GetHost

GetHost retrieves information associated with an SDM host. The associated information is
the public part of the Host Authentication Key and the public part of the Attestation
Identity Key.

Command Structure
Name Type Description
Comman
d

byte GET_HOST

HostID SdmIdentifier The globally unique identifier of the host.

7.2.3 ListHosts

ListHosts retrieves a list of all hosts stored in the SDM. The command returns a set of
unique host identifiers.

Command Structure
Name Type Description
Comman
d

byte LIST_HOSTS

7.2.4 RemoveHost
RemoveHost removes an SDM host from the SDM. The host must be empty of all keys before it can
be successfully removed!

Command Structure
Name Type Description
Comman
d

byte REMOVE_HOST

HostID SdmIdentifier The globally unique identifier of the host to remove.

38

7.2.5 SetAdministrationHost

SetAdministrationHost updates the existing administration host of the SDM with new
information.

The administration host is the SDM representation of the platform that is allowed to
administer the SDM. An administration host consists of a unique identifier, a Host
Authentication Key (HAK), an Attestation Identity Key (AIK), and a valid platform
configuration.

The unique identifier must be unique for all hosts that are part of the SDM protected
infrastructure, it should be globally unique. The HAK is used to authenticate a session
between the host and the SDM. The AIK is used by the host's TPM to sign a platform report.
The valid platform configuration defines the trusted state the administration host must be
in, to be allowed to administer the SDM.

Command Structure
Name Type Description
Comman
d

byte SET_ADMIN_HOST

HostID SdmIdentifier The globally unique identifier of the administration
host.

HAK
modulus

byte[256] The modulus of the public part of the Host
Authentication Key. The Host Authentication Key is an
RSA public key pair, where the private key is only
known to the SDM host. The SDM requires the public
key for administration session authentication.

HAK
public
exponent

byte[256] The public exponent of the public part of the Host
Authentication Key.

AIK
modulus

byte[256] The modulus of the public part of the Attestation
Identity Key. The private part of the Attestation
Identity Key is used by the administration host's TPM to
sign the platform configuration report (TPM Quote)
which is a strict requirement of the administration
session establishment protocol.

AIK public
exponent

byte[256] The public exponent of the public part of the
Attestation Identity Key.

HostConf HostConfiguration The valid configuration (trusted state) the
administration host must be in to administer the SDM.

7.3 Key Related Commands
The primary task of the SDM is to protect keys. The SDM knows three different key
protection mechanisms. The first type is called Platform Configuration Protected or PCP in
short. As the name suggest, for this protection mechanism the key is bound to a specific

39

set of valid platform configurations so-called trusted states. Only, if the host platform is in a
valid configuration, the key is released.

The second type is named Authorization Token Protected or ATP. ATP protected keys are
released if a given authorization token (password) matches the authorization token
associated with the key. The last type Authorized Platform Configuration Protected (APCP)
releases keys to the host, if the host is in a valid configuration and can supply an
authorization token.

7.3.1 AddKey

AddKey adds a new or updates an existing SDM protected key. A key is always associated
with an SDM host. Both the unique key and the unique host identifiers together not only
uniquely identify the key, but also allow lookup of a key within the SDM. The SDM must be
in an administration session for this command to succeed.

An SDM protected key is initialized with an identifier (SdmIdentifier), a protection
mechanism type and the actual data that should be protected (SdmKeyMaterial). The
actual configuration data for the key protection mechanism (valid platform configurations
and/or an authorization token) must be provided using the AddHostConfiguration
and/or the SetAuthorizationToken commands.

Command Structure
Name Type Description
Comman
d

byte ADD_KEY

HostID SdmIdentifier The globally unique identifier of the host
KeyID SdmIdentifier The (HostID, KeyID) pair uniquely identifies a specific key

within the protection of the SDM. Whereas the host
identifier must be globally unique, the key identifier must
be at least unique for all keys of that specific host.

ProtType SdmKey.Type The protection mechanism type. The protection
mechanism can either be Platform Configuration
Protected (PCP), Authorization Token Protected (ATP), and
Authorized Platform Configuration Protected (APCP).

KeyMat SdmKeyMaterial The data the SDM should protect with the chosen key
protection mechanism. It is expected that this data will
mostly be comprised of cryptographic key material,
hence the name. Currently the size of the protected data
is limited to 1024 bytes.

7.3.2 GetKey

GetKey retrieves an existing SDM protected key from the SDM. A key is always associated
with an SDM host. Both the unique key and the unique host identifiers together not only
uniquely identify the key, but also allow lookup of a key within the SDM. The SDM must be
in an administration session for this command to succeed.

This command retrieves the basic information associated with an SdmKey: the key
protection mechanism and the actual protected key material. To manage the protection

40

mechanism data (valid platform configurations and/or an authorization token) a set of
commands exists.

Command Structure
Name Type Description
Comma
nd

byte GET_KEY

HostID SdmIdentifier The globally unique identifier of the host
KeyID SdmIdentifier The (HostID, KeyID) pair uniquely identifies a specific key

within the protection of the SDM. Whereas the host identifier
must be globally unique, the key identifier must be at least
unique for all keys of that specific host.

7.3.3 ListKeys

ListKeys retrieves a list of protected keys associated with a specific host in the SDM. A
key is always associated with an SDM host. Therefore, in order to list the keys, the host
identifier must be specified. The SDM must be in an administration session for this
command to succeed.

Command Structure
Name Type Description
Comman
d

byte LIST_KEYS

HostID SdmIdentifier The globally unique identifier of the host for which the list of
keys should be retrieved.

7.3.4 RemoveKey

RemoveKey deletes an existing, empty SDM protected key from the SDM. The key must not
contain any valid platform configurations otherwise the remove operation will fail. A key is
always associated with an SDM host. Both the unique key and the unique host identifiers
together not only uniquely identify the key, but also allow lookup of a key within the SDM.
The SDM must be in an administration session for this command to succeed.

Command Structure
Name Type Description
Command byte REMOVE_KEY
HostID SdmIdentifier The globally unique identifier of the host
KeyID SdmIdentifier The (HostID, KeyID) pair uniquely identifies a specific key

within the protection of the SDM. Whereas the host
identifier must be globally unique, the key identifier must
be at least unique for all keys of that specific host.

7.4 SetAuthorizationToken
SetAuthorizationToken sets a new or overwrites an existing authorization SdmToken for a
specific key protected by the SDM. Both the unique key and the unique host identifiers
together not only uniquely identify the key, but also allow lookup of a key within the SDM.

41

The key identified by the host identifier/key identifier pair must be of type ATP or APCP (see
below). In contrast to valid platform configurations, a key can only have a single
authorization token. The SDM must be in an administration session for this command to
succeed.

Command Structure
Name Type Description
Comman
d

byte SET_AUTH_TOKEN

HostID SdmIdentifier The globally unique identifier of the host
KeyID SdmIdentifier The (HostID,KeyID) pair uniquely identifies a specific key

within the protection of the SDM. Whereas the host
identifier must be globally unique, the key identifier
must be at least unique for all keys of that specific host.

AuthToke
n

SdmToken The new authorization token (password) for the
specified key.

7.5 Trusted State Related Commands
The SDM protects key material. Two of the protection mechanisms provided by the SDM
only grant the release of a key, if the host platform is in a valid platform configuration. A
valid platform configuration is therefore always related to a specific key. A specific key is
always associated with a specific host. Therefore, to modify (add, remove) and also to test
for the existence of a specific valid platform configuration, three inputs are required by
the SDM; a unique host identifier, a unique key identifier and the actual valid platform
configuration.

7.5.1 AddHostConfiguration

AddHostConfiguration adds a new valid platform configuration (trusted state) to the set
of valid platform configurations of a specific key which employs a platform configuration
based key release scheme. In order to identify the target key, both a unique host and
host-unique key identifier are necessary. If the valid platform configuration that should be
added with this command is already stored for the specified key, this command will have
no effect. This command is part of the administrative interface and must be issued in an
administrative session.

Command Structure
Name Type Description
Comman
d

byte ADD_HOST_CONFIGURATION

HostID SdmIdentifier The globally unique identifier of the host
KeyID SdmIdentifier The (HostID, KeyID) pair uniquely identifies a specific

key within the protection of the SDM. Whereas the host
identifier must be globally unique, the key identifier
must be at least unique for all keys of that specific
host.

ValidCon
f

HostConfiguration A new valid platform configuration (trusted state) that
should be added to the set of trusted states that

42

govern the release of a specific key.

7.5.2 ContainsHostConfiguration

ContainsHostConfiguration tests if the list of valid platform configurations of a specific
key which employs a platform configuration based key release scheme, contains a
specific valid platform configuration (trusted state). In order to identify the target key, both
a unique host and unique key identifier are necessary.

Command Structure
Name Type Description
Comman
d

byte CONTAINS_HOST_CONFIGURATION

HostID SdmIdentifier The globally unique identifier of the host
KeyID SdmIdentifier The (HostID, KeyID) pair uniquely identifies a specific

key within the protection of the SDM. Whereas the host
identifier must be globally unique, the key identifier
must be at least unique for all keys of that specific host.

ValidCon
f

HostConfiguration The valid platform configuration (trusted state) to test
for in the set of trusted states that govern the release of
a specific key.

7.5.3 ListHostConfigurations

ListHostConfigurations generates a list of valid platform configuration (trusted state)
for a specific key which employs a platform configuration based key release scheme. In
order to identify the target key, both a unique host and host-unique key identifier are
necessary.

Command Structure
Name Type Description
Comman
d

byte REMOVE_HOST_CONFIGURATION

HostID SdmIdentifier The globally unique identifier of the host
KeyID SdmIdentifier The (HostID, KeyID) pair uniquely identifies a specific

key within the protection of the SDM. Whereas the host
identifier must be globally unique, the key identifier
must be at least unique for all keys of that specific host.

7.5.4 RemoveHostConfiguration

RemoveHostConfiguration removes a valid platform configuration from the set of valid
platform configurations of a specific key which employs a platform configuration based
key release scheme. In order to identify the target key, both a unique host and unique key
identifier are necessary.

Command Structure
Name Type Description
Comman
d

byte REMOVE_HOST_CONFIGURATION

43

HostID SdmIdentifier The globally unique identifier of the host
KeyID SdmIdentifier The (HostID,KeyID) pair uniquely identifies a specific

key within the protection of the SDM. Whereas the host
identifier must be globally unique, the key identifier
must be at least unique for all keys of that specific host.

ValidCon
f

HostConfiguration The valid platform configuration (trusted state) to
remove from the set of trusted states.

44

8. Hardware Requirements

The specification of the functions of the SDM allows inferring a list of required hardware
components. The hardware specification given here is preliminary. The exact hardware
configuration of the SDM will be specified as part of WP5 task T5.2 (M9-M18): Design of the
Secure Docking Module (IFX, TUG, CEA, HIT). The list of required components that have
been identified so far is as follows:

1. A processor and associated memory

A small processor (relative to the SDM) with a moderate amount of RAM is required
to control the SDM subcomponents. This combination may also implement some or
all of the SDM functionality in software.

2. An RSA module

The RSA module serves two purposes. Its primary purpose is to verify the signatures
on the TPM Quote operations. Its secondary function is to help establishing an
authenticated and encrypted communications channel between the SDM and its
host computing device. To fulfil these requirements the RSA module must be
capable of encryption, decryption, and creation and verification of digital
signatures.

3. A SHA-1 hash module

A TPM Quote is a digitally signed platform configuration report. The actual platform
configuration is represented by a set of SHA-1 hashes. These SHA-1 hashes are
stored in so called PCRs inside the TPM. To minimize the size of the Quote a SHA-1
hash of a selected set of PCRs is computed and subsequently signed by the TPM.
Depending on the exact details of the key release protocol it might be necessary
to recalculate the SHA-1 hash of the selected set of PCRs. The symmetric
communication session key is also derived from the nonces using the SHA-1 hash
module.

4. A True Random Number Generator

The True Random Number Generator is required to generate numbers that are only
used once, so called nonces. The key release protocol for example requires an SDM
created nonce to guarantee the freshness of the Quote generated by the TPM in
the TDS. Also the host to SDM communication protocol requires a randomly created
Initialization Vector (IV). The random number generation functionality is also made
available to hosts as part of the functional specification.

5. A symmetric cryptographic primitive

The necessity of an authenticated and encrypted communications channel
requires a symmetric cryptographic primitive to encrypt the communication. An

45

example of such a primitive is the Advanced Encryption Standard (AES) block
cipher. The wide acceptance of AES as a cryptographic standard and the fact
that there are no known exploitable weaknesses makes it AES a valid choice for this
purpose.

6. A non-volatile storage for keys and platform configurations

The primary purpose of the SDM is to protect key material for asymmetric
cryptography. This key material is stored in a non-volatile memory on the SDM. The
SDM must also store a set of valid platform configurations (trusted states).

7. A physical interface

The physical interface defines how the SDM is physically connected to the TDS.
Several considerations factor into the choice of a physical interface for the SDM.
These considerations are security, compatibility and bandwidth. Thanks to the end-
to-end secure channel security requirement the relevance of the physical interface
to the security of the SDM is limited.

The SDM’s primary function is to protect key material. This key material must be
released whenever client software requires it. Therefore, the bandwidth
requirement depends on the amount of transferred data per key release and the
number of key releases per power cycle. The amount of transferred data is
estimated to be about a few kilo bytes depending on the size of the key material.
Once the SDM releases a key, the client software has full control over it. Therefore, it
can be expected that client software initiates only one key release sequence per
key and only once per life cycle. For these reasons, bandwidth is no limiting factor
in the selection of the physical interface of the SDM.

The last point to consider for the interface is compatibility. The SDM should also
provide limited services to mobile host devices and therefore a MicroSD interface
variant of the SDM will be considered as part of the design process. For non mobile
host devices, the current aim is to provide a USB interface.

8.1 Tamper Resilience
So in war, the way is to avoid what is strong and to strike at what is weak. Sung Tzu

As was explained in [2.1] the security of the SDM is directly bound to the security provided
by the host platform’s TPM. The platform attestation process which is used to prove to the
SDM that the host is in a trusted state and which governs the release of key material has
two dependencies. It relies on the Chain of Trust and the security of the attestation
process.

The Chain of Trust is an uninterrupted chain of measurements starting at the Core Root of
Trust for Measurement, which is either a BIOS component or an authenticated code
module up to the running application. It is built on the principle of measuring before
executing. For a more detailed explanation refer to section 2.1. The security Chain of Trust
depends on both the PC host platform and the TPM. A PC platform provides very limited

46

to no protection against hardware attacks. Therefore, the aim of Trusted Computing is to
protect a PC platform against software attacks [Gra06].

The security of the attestation mechanism depends on the Core Root of Trust for
Reporting. The Core Root of Trust for Reporting is rooted in the security of the Attestation
Identity Key. The Attestation Identity Key is a 2048-bit RSA key pair. Its private part is used to
sign the platform configuration report (TPM Quote). The private part of the Attestation
Identity Key never leaves the TPM unencrypted. The security of the Attestation Identity Key
has again two dependencies. The first is that it is intractable to break the RSA asymmetric
cryptography scheme and the second that the key cannot be extracted from the TPM.

As both the Core Root of Trust for Measurement and the Core Root of Trust for Reporting
rely on the security of the TPM, the SDM should provide the same protection to the data it
guards, as does the TPM. A Protection Profile [TCG08] for the TCG PC Client Specific
Trusted Platform Module exists as well as a certification report [BSI08] for this Protection
Profile by the German Federal Office for Information Security (BSI).

8.2 SDM Security Considerations
The security design of the SDM may take the Protection Profile for a TPM as a basis as some
system aspects are comparable. Referenced from the TCG protection profile for PC Client
Specific TPMs, the SDM can be described as hardware, firmware and/or software that
implements the defined functionality. The used primitives for the SDM include
cryptographic algorithms for authentication and data de-/encryption, random number
generation and a hash algorithm. Primarily, there are no cryptographic services that are
provided as functionality (i.e. encryption of user data, signing of user data, etc.). This eases
the system design in a way, that leakage of security relevant information is somewhat
restricted.

Threat definition for the TPM also fits to the security considerations for the SDM. Following is
a list of threats with descriptions for the SDM.

• Compromise: in the context of an SDM this means getting access to
communication keys without having the access rights therefore

• Bypass: getting access to security relevant data like keys without using the
defined functionality of the SDM

• Hack Crypto:hacking the cryptographic algorithm as such

• Hack Physical: hacking of the cryptographic operation or other security
relevant data with intact strength of the algorithm; these physical
attacks can be attacks on non volatile memories as well as
implemented logic

• Import/Export: an attacker may import erroneous or incorrect data to
invalidate the communication keys of the system (DoS attack)

47

• Intercept: an attacker may intercept the communication to and from the SDM
to gain knowledge about secrets or to try to use the gained
information to perform a replay attack

• Malfunction: relevant assets may be disclosed to an attacker by malfunctions of
the SDM.

• Modify: unauthorized modification of data may lead to numerous system
issues.

• Replay: get hold of authentication or identification data by intercepting some
communication and use this information for a so called “Replay
Attack”

Similar to the threat definition, security objectives are quite similar for an SDM compared to
a TPM.

• Crypto_Key_Man The SDM must manage cryptographic keys in a secure manner
including releasing the keys only after a secure state has been proven
to the SDM.

• DAC The SDM must control and restrict client entity access to the SDM
protected capabilities and shielded location in accordance with a
specified access control policy.

• Export When data (keys) are exported outside the SDM, it must securely
protect the confidentiality and the integrity of the data.

• Fail_Secure The SDM must enter a secure failure mode in the event of a failure.

• I&A The SDM must identify all client entities, and shall authenticate the
claimed identity before granting a client entity access to the SDM
facilities.

• Limit_Actions_Auth The SDM must restrict the actions a client entity may perform
before the SDM verifies the identity of the client entity.

• Single_Auth The SDM must provide a single client entity authentication mechanism
and require re-authentication to prevent “replay” and “man-in-the-
middle” attacks.

• Tamper_Resistance The SDM must resist physical tampering of the security functions
by hostile users.

8.3 On the use of SHA-1
We are aware that some vulnerabilities of the SHA-1 hash function are known. We are,
however, forced to use this hash function as long as the TPM relies on it. In case of a future
change of the TPM specifications that calls for a different hash function it is strongly
advised, or even a must, to change the SDM hash function as well. This should be taken

48

into account during the design phase. A software implementation should be considered
to allow for algorithm agility.

49

9. Glossary

AES Advanced Encryption Standard

API Application Programming Interface

CBC Cipher Block Chaining

CRTM Core Root of Trust for Measurement

IV Initialization Vector

PCR Platform Configuration Register

SDM Secure Docking Module

SDS Secure Docking Station – a combination of TDS and SDM

SHA Secure Hash Algorithm

TCG Trusted Computing Group

TDS Trusted Docking Station

TPM Trusted Platform Module

VMM Virtual Machine Monitor (Hypervisor)

50

10. References

[D2.1] Kocis et al. SECRICOM – Analysis of external and internal system requirements.
Deliverable report D2.1, the SECRICOM project, February 2009.

[D4.1] Simo et al. SECRICOM – Security requirements and specification for docking station
module

[BSI08] Federal Office for Information Security (BSI), BSI-CC-PP-0030-2008, Certification Report,
Common Criteria Protection Profile for PC Client Specific Trusted Platform Module Family
1.2; Level 2, Version 1.1 developed by Trusted Computing Group, 2008.

[Gra06] David Grawrock. The Intel Safer Computing Initiative Building Blocks for Trusted
Computing. Richard Bowles, 2006.

[TCG08] Trusted Computing Group, Protection Profile, PC Client Specific Trusted Platform Module,
TPM Family 1.2; Level 2, Version: 1.1; July 10, 2008

5/22/09 Page 51

Appendix A High Level Java Library Documentation

Package Summary Page

at.iaik.secricom.sdm 51

at.iaik.secricom.sdm.admin 94

Package at.iaik.secricom.sdm

Interface Summary Page

SdmKey SdmKey is the base interface for all types of SDM keys and provides
methods to obtain the key identifier and the actual key material.

62

SdmSession An SdmSession (pronounced S-D-M Session) enables a client to
communicate with the SDM.

71

SdmStatus SdmStatus indicates the operation status of the SDM. 77

SdmVersion SdmVersion defines the version of the SDM. 82

SecureDockingModule SecureDockingModule manages access to the functionalities provided by a
Secure Docking Module.

83

Class Summary Page

SdmIdentifier Uniquely identifies an SDM specific object. 54

SdmKeyMaterial SdmKeyMaterial is information protected by the SDM. 65

SdmRandomBytes SdmRandomBytes represents an array of random bytes generated by the SDM's
hardware random number generator.

69

SdmToken SdmToken are authorization tokens that grant access to certain keys. 79

TpmNonce TpmNonce represents a 20 bytes long nonce used in a TPM quote operation. 87

TpmQuote TpmQuote represents a signed TPM quote info data structure. 89

Util Util is a set of utility methods that support the SDM interface with functions like
byte[] pretty printing, a factory method for TPM quote info data structures etc..

91

Enum Summary Page

SdmKey.Type Protection mechanism Type of a key. 64

SdmStatus.Status Status represents the current status of the SDM. 78

Package at.iaik.secricom.sdm

5/22/09 Page 52

Exception Summary Page

SdmException Indicates a problem related to the Secure Docking Module and
forms the basis for the SDM exception hierarchy.

52

SdmInvalidKeyTypeException
SdmInvalidKeyTypeException indicates that an SDM operation
failed because it operated on a key with the wrong protection
mechanism type.

57

SdmInvalidParameterException SdmInvalidParameterException indicates that a method of the
SDM interface was called with an invalid parameter.

58

SdmIOException SdmIoException indicates errors related to managing the
persistent state of the SDM.

60

SdmObjectNotEmptyException SdmObjectNotEmptyException indicates that removal of an object
from the SDM failed because the specific object is not empty.

67

SdmUnknownKeyException
SdmUnknownKeyException indicates that an SDM operation failed
because it tried to operate on a key that is not known to the SDM
in the specified context.

81

Class SdmException
at.iaik.secricom.sdm

java.lang.Object

 java.lang.Throwable

 java.lang.Exception

 at.iaik.secricom.sdm.SdmException

All Implemented Interfaces:
Serializable

Direct Known Subclasses:
SdmInvalidKeyTypeException, SdmInvalidParameterException, SdmIOException,
SdmObjectNotEmptyException, SdmUnknownHostException, SdmUnknownKeyException

public class SdmException

extends Exception

Indicates a problem related to the Secure Docking Module and forms the basis for the SDM exception
hierarchy.

Constructor Summary Page

SdmException()

Constructs a new SdmException with null as its detail message.
53

Class SdmException

5/22/09 Page 53

SdmException(String message)

Constructs a new SdmException with the specified detail message.
53

SdmException(String message, Throwable cause)

Constructs a new SdmException with the specified detail message and cause.
53

SdmException(Throwable cause)

Constructs a new SdmException with the specified cause and a detail message which is null
if the cause is null; otherwise the detail message is cause.toString().

54

Constructor Detail

SdmException

public SdmException()

Constructs a new SdmException with null as its detail message. The cause cause is not initialized. A
call to the initCause(Throwable) method may be used to initialize the cause after exception
creation.

SdmException

public SdmException(String message,
 Throwable cause)

Constructs a new SdmException with the specified detail message and cause.

Parameters:

message - the detail message

cause - the cause. A null value is permitted and indicates that the cause is nonexistent or
unknown.

SdmException

public SdmException(String message)

Constructs a new SdmException with the specified detail message. The cause cause is not
initialized. A call to the initCause(Throwable) may be used to initialize the cause after exception
creation.

Parameters:

message - the detail message

Class SdmException

5/22/09 Page 54

SdmException

public SdmException(Throwable cause)

Constructs a new SdmException with the specified cause and a detail message which is null if the
cause is null; otherwise the detail message is cause.toString().

Parameters:

cause - the cause of this exception

Class SdmIdentifier
at.iaik.secricom.sdm

java.lang.Object

 at.iaik.secricom.sdm.SdmIdentifier

public class SdmIdentifier

extends Object

Uniquely identifies an SDM specific object. The SDM manages several different objects. These include
hosts, keys, valid platform configurations, and authorization tokens. Some of these objects must be
identified by a unique identifier. The SdmIdentifier performs this task.

A SdmIdentifier is subject to certain restrictions. Current restrictions are preliminary, and might change
with the gradual development of the actual hardware specifications. Currently, an SdmIdentifier must
not be longer than 20 bytes. Furthermore, identifiers are currently interpreted as ASCII encoded strings in
the Java SDM library.

Constructor Summary Page

SdmIdentifier(byte[] uid)

Constructs a new SdmIdentifier with the specified byte[] unique identifier.
55

SdmIdentifier(String uid)

Constructs a new SdmIdentifier with the specified String unique identifier.
55

Method Summary Page
boolean equals(Object obj) 56

int getLength() 56
byte[] getUniqueId() 55

int hashCode() 56
String toString() 56

Class SdmIdentifier

5/22/09 Page 55

Constructor Detail

SdmIdentifier

public SdmIdentifier(String uid)
 throws SdmInvalidParameterException

Constructs a new SdmIdentifier with the specified String unique identifier. The given identifier
must not be null and must not be longer than 20 bytes, when byte[] encoded using the ASCII
CharSet.

Parameters:

uid - the unique identifier encoded as a String.

Throws:

SdmInvalidParameterException - if the given unique identifier is null or longer than 20 bytes,
when ASCII encoded.

SdmIdentifier

public SdmIdentifier(byte[] uid)
 throws SdmInvalidParameterException

Constructs a new SdmIdentifier with the specified byte[] unique identifier. The given identifier
must not be null and must not be longer than 20 bytes, when byte[] encoded using the ASCII
CharSet.

Parameters:

uid - the unique identifier

Throws:

SdmInvalidParameterException - if the specified identifier is null or longer than 20 bytes.

Method Detail

getUniqueId

public byte[] getUniqueId()

Returns:

a defensive copy of the byte[] representing the unique id of the identifier.

getLength

public int getLength()

Class SdmIdentifier

5/22/09 Page 56

Returns:

the actual number of bytes required by this SdmIdentifier.

equals

public boolean equals(Object obj)

Overrides:

equals in class Object

hashCode

public int hashCode()

Overrides:

hashCode in class Object

toString

public String toString()

Overrides:

toString in class Object

Class SdmInvalidKeyTypeException
at.iaik.secricom.sdm

java.lang.Object

 java.lang.Throwable

 java.lang.Exception

 at.iaik.secricom.sdm.SdmException

 at.iaik.secricom.sdm.SdmInvalidKeyTypeException

All Implemented Interfaces:
Serializable

public class SdmInvalidKeyTypeException

extends SdmException

Class SdmInvalidKeyTypeException

5/22/09 Page 57

SdmInvalidKeyTypeException indicates that an SDM operation failed because it operated on a key with
the wrong protection mechanism type.

Constructor Summary Page

SdmInvalidKeyTypeException()

Constructs a new SdmInvalidKeyTypeException with null as its detail message.
57

SdmInvalidKeyTypeException(String message)

Constructs a new SdmInvalidKeyTypeException with the specified detail message.
58

SdmInvalidKeyTypeException(String message, Throwable cause)

Constructs a new SdmInvalidKeyTypeException with the specified detail message and
cause.

58

SdmInvalidKeyTypeException(Throwable cause)

Constructs a new SdmInvalidKeyTypeException with the specified cause and a detail
message which is null if the cause is null; otherwise the detail message is cause.toString().

58

Constructor Detail

SdmInvalidKeyTypeException

public SdmInvalidKeyTypeException()

Constructs a new SdmInvalidKeyTypeException with null as its detail message. The cause cause is
not initialized. A call to the initCause(Throwable) method may be used to initialize the cause
after exception creation.

SdmInvalidKeyTypeException

public SdmInvalidKeyTypeException(String message,
 Throwable cause)

Constructs a new SdmInvalidKeyTypeException with the specified detail message and cause.

Parameters:

message - the detail message

cause - the cause. A null value is permitted and indicates that the cause is nonexistent or
unknown.

SdmInvalidKeyTypeException

public SdmInvalidKeyTypeException(String message)

Class SdmInvalidKeyTypeException

5/22/09 Page 58

Constructs a new SdmInvalidKeyTypeException with the specified detail message. The cause
cause is not initialized. A call to the initCause(Throwable) may be used to initialize the cause after
exception creation.

Parameters:

message - the detail message

SdmInvalidKeyTypeException

public SdmInvalidKeyTypeException(Throwable cause)

Constructs a new SdmInvalidKeyTypeException with the specified cause and a detail message
which is null if the cause is null; otherwise the detail message is cause.toString().

Parameters:

cause - the cause of this exception

Class SdmInvalidParameterException
at.iaik.secricom.sdm

java.lang.Object

 java.lang.Throwable

 java.lang.Exception

 at.iaik.secricom.sdm.SdmException

 at.iaik.secricom.sdm.SdmInvalidParameterException

All Implemented Interfaces:
Serializable

public class SdmInvalidParameterException

extends SdmException

SdmInvalidParameterException indicates that a method of the SDM interface was called with an invalid
parameter. An invalid parameter exception is also thrown if the given parameter is null. This exception is
not a runtime exception and thus forces the caller of the API explicitly consider these error cases.

Constructor Summary Page

SdmInvalidParameterException()

Constructs a new SdmInvalidParameterException with null as its detail message.
59

Class SdmInvalidParameterException

5/22/09 Page 59

SdmInvalidParameterException(String message)

Constructs a new SdmInvalidParameterException with the specified detail message.
60

SdmInvalidParameterException(String message, Throwable cause)

Constructs a new SdmInvalidParameterException with the specified detail message and
cause.

59

SdmInvalidParameterException(Throwable cause)

Constructs a new SdmInvalidParameterException with the specified cause and a detail
message which is null if the cause is null; otherwise the detail message is cause.toString().

60

Constructor Detail

SdmInvalidParameterException

public SdmInvalidParameterException()

Constructs a new SdmInvalidParameterException with null as its detail message. The cause cause
is not initialized. A call to the initCause(Throwable) method may be used to initialize the cause
after exception creation.

SdmInvalidParameterException

public SdmInvalidParameterException(String message,
 Throwable cause)

Constructs a new SdmInvalidParameterException with the specified detail message and cause.

Parameters:

message - the detail message

cause - the cause. A null value is permitted and indicates that the cause is nonexistent or
unknown.

SdmInvalidParameterException

public SdmInvalidParameterException(String message)

Constructs a new SdmInvalidParameterException with the specified detail message. The cause
cause is not initialized. A call to the initCause(Throwable) may be used to initialize the cause after
exception creation.

Parameters:

message - the detail message

Class SdmInvalidParameterException

5/22/09 Page 60

SdmInvalidParameterException

public SdmInvalidParameterException(Throwable cause)

Constructs a new SdmInvalidParameterException with the specified cause and a detail message
which is null if the cause is null; otherwise the detail message is cause.toString().

Parameters:

cause - the cause of this exception

Class SdmIOException
at.iaik.secricom.sdm

java.lang.Object

 java.lang.Throwable

 java.lang.Exception

 at.iaik.secricom.sdm.SdmException

 at.iaik.secricom.sdm.SdmIOException

All Implemented Interfaces:
Serializable

public class SdmIOException

extends SdmException

SdmIoException indicates errors related to managing the persistent state of the SDM. Information in the
SDM (hosts, keys, and so on) are stored in some form of persistent storage. This exception indicates that
writing or reading to/from this storage failed.

Constructor Summary Page

SdmIOException()

Constructs a new SdmIOException with null as its detail message.
61

SdmIOException(String message)

Constructs a new SdmIOException with the specified detail message.
61

SdmIOException(String message, Throwable cause)

Constructs a new SdmIOException with the specified detail message and cause.
61

SdmIOException(Throwable cause)

Constructs a new SdmIOException with the specified cause and a detail message which is
null if the cause is null; otherwise the detail message is cause.toString().

62

Class SdmIOException

5/22/09 Page 61

Constructor Detail

SdmIOException

public SdmIOException()

Constructs a new SdmIOException with null as its detail message. The cause cause is not initialized.
A call to the initCause(Throwable) method may be used to initialize the cause after exception
creation.

SdmIOException

public SdmIOException(String message,
 Throwable cause)

Constructs a new SdmIOException with the specified detail message and cause.

Parameters:

message - the detail message

cause - the cause. A null value is permitted and indicates that the cause is nonexistent or
unknown.

SdmIOException

public SdmIOException(String message)

Constructs a new SdmIOException with the specified detail message. The cause cause is not
initialized. A call to the initCause(Throwable) may be used to initialize the cause after exception
creation.

Parameters:

message - the detail message

SdmIOException

public SdmIOException(Throwable cause)

Constructs a new SdmIOException with the specified cause and a detail message which is null if
the cause is null; otherwise the detail message is cause.toString().

Parameters:

cause - the cause of this exception

Interface SdmKey

5/22/09 Page 62

Interface SdmKey
at.iaik.secricom.sdm

All Known Subinterfaces:
ConfigurationProtectedKey, TokenProtectedKey

public interface SdmKey

SdmKey is the base interface for all types of SDM keys and provides methods to obtain the key identifier
and the actual key material.Aside from its protection mechanism (see below) an SDM key consists of a
unique identifier and the actual key material. The unique identifier should allow associating the protected
key material with a certificate. The key material is the actual key information, which could range from
credentials to access a legacy system to cryptographic keys.

There exist three protection mechanisms for SDM keys. The first type called platform configuration
protected or PCP in short. As the name suggest, for this protection mechanism the key is bound to a
specific set of platform states. Only, if the host platform is in a valid configuration, the key is released. The
second type is named authorization token protected or ATP. Thus protected keys are released if a given
authorization token (password) matches the authorization token associated with the key. The last type
authorized platform configuration protected (APCP) releases keys to the host, if the host is in a valid
configuration and can supply an authorization token.

See Also:

SdmIdentifier, SdmKeyMaterial

Nested Class Summary Page
static

enum
SdmKey.Type

Protection mechanism Type of a key.
64

Method Summary Page
SdmIdentifier getKeyIdentifier() 63
SdmKeyMaterial getSdmKeyMaterial() 63

SdmKey.Type getType() 63

Method Detail

getKeyIdentifier

SdmIdentifier getKeyIdentifier()

Returns:

the unique identifier of the key

Interface SdmKey

5/22/09 Page 63

getSdmKeyMaterial

SdmKeyMaterial getSdmKeyMaterial()

Returns:

the actual key material protected by the SDM

getType

SdmKey.Type getType()

Returns:

the type of the key. Either Platform Configuration Protected (PCP) , Authorization Token
Protected (ATP), or Authorized Platform Configuration Protected (APCP).

Enum SdmKey.Type
at.iaik.secricom.sdm

java.lang.Object

 java.lang.Enum<SdmKey.Type>

 at.iaik.secricom.sdm.SdmKey.Type

All Implemented Interfaces:
Comparable<SdmKey.Type>, Serializable

Enclosing class:
SdmKey

public static enum SdmKey.Type

extends Enum<SdmKey.Type>

Protection mechanism Type of a key. Either Platform Configuration Protected (PCP) , Authorization Token
Protected (ATP), or Authorized Platform Configuration Protected (APCP).

Enum Constant Summary Page

APCP 65

ATP 64

PCP 64

Enum SdmKey.Type

5/22/09 Page 64

Method Summary Page
static

SdmKey.Type
valueOf(String name) 65

static
SdmKey.Type[]

values() 65

Enum Constant Detail

PCP

public static final SdmKey.Type PCP

ATP

public static final SdmKey.Type ATP

APCP

public static final SdmKey.Type APCP

Method Detail

values

public static SdmKey.Type[] values()

valueOf

public static SdmKey.Type valueOf(String name)

Class SdmKeyMaterial
at.iaik.secricom.sdm

java.lang.Object

 at.iaik.secricom.sdm.SdmKeyMaterial

public class SdmKeyMaterial

extends Object

SdmKeyMaterial is information protected by the SDM. The idea behind the SDM is to release key
information only to platforms in a trusted state. SdmKeyMaterial represents this SDM protected information.

Currently, SdmKeyMaterial is a byte[] with a maximum length of 1024 bytes. This value is not finalized and
must be adapted to the capabilities of the actual SDM hardware implementation. A lower bound for
protected key should be at least 256 bytes, which is the maximum length of a 2048 bit private RSA key.

Class SdmKeyMaterial

5/22/09 Page 65

Constructor Summary Page

SdmKeyMaterial(byte[] material)

Constructs a new KeyMaterial with the specified byte[] containing the key material.
66

Method Summary Page
boolean equals(Object obj) 66
byte[] getKeyMaterial() 66

int hashCode() 66
String toString() 66

Constructor Detail

SdmKeyMaterial

public SdmKeyMaterial(byte[] material)
 throws SdmInvalidParameterException

Constructs a new KeyMaterial with the specified byte[] containing the key material.

Parameters:

material - the key material, must not be null and must not be longer than 1024 bytes

Throws:

SdmInvalidParameterException - if the specified key material is null or longer than 1024
bytes

Method Detail

getKeyMaterial

public byte[] getKeyMaterial()

Returns:

the SDM protected key material. Key material is simply a byte[] with a maximum length of
1024 bytes.

hashCode

public int hashCode()

Overrides:

hashCode in class Object

Class SdmKeyMaterial

5/22/09 Page 66

equals

public boolean equals(Object obj)

Overrides:

equals in class Object

toString

public String toString()

Overrides:

toString in class Object

Class SdmObjectNotEmptyException
at.iaik.secricom.sdm

java.lang.Object

 java.lang.Throwable

 java.lang.Exception

 at.iaik.secricom.sdm.SdmException

 at.iaik.secricom.sdm.SdmObjectNotEmptyException

All Implemented Interfaces:
Serializable

public class SdmObjectNotEmptyException

extends SdmException

SdmObjectNotEmptyException indicates that removal of an object from the SDM failed because the
specific object is not empty. This exception might be thrown during and SDM administration session if a
host or key removal fails due to the above cause.

Constructor Summary Page

SdmObjectNotEmptyException()

Constructs a new SdmObjectNotEmptyException with null as its detail message.
68

SdmObjectNotEmptyException(String message)

Constructs a new SdmObjectNotEmptyException with the specified detail message.
68

Class SdmObjectNotEmptyException

5/22/09 Page 67

SdmObjectNotEmptyException(String message, Throwable cause)

Constructs a new SdmObjectNotEmptyException with the specified detail message and
cause.

68

SdmObjectNotEmptyException(Throwable cause)

Constructs a new SdmObjectNotEmptyException with the specified cause and a detail
message which is null if the cause is null; otherwise the detail message is cause.toString().

68

Constructor Detail

SdmObjectNotEmptyException

public SdmObjectNotEmptyException()

Constructs a new SdmObjectNotEmptyException with null as its detail message. The cause cause is
not initialized. A call to the initCause(Throwable) method may be used to initialize the cause
after exception creation.

SdmObjectNotEmptyException

public SdmObjectNotEmptyException(String message,
 Throwable cause)

Constructs a new SdmObjectNotEmptyException with the specified detail message and cause.

Parameters:

message - the detail message

cause - the cause. A null value is permitted and indicates that the cause is nonexistent or
unknown.

SdmObjectNotEmptyException

public SdmObjectNotEmptyException(String message)

Constructs a new SdmObjectNotEmptyException with the specified detail message. The cause
cause is not initialized. A call to the initCause(Throwable) may be used to initialize the cause after
exception creation.

Parameters:

message - the detail message

SdmObjectNotEmptyException

public SdmObjectNotEmptyException(Throwable cause)

Class SdmObjectNotEmptyException

5/22/09 Page 68

Constructs a new SdmObjectNotEmptyException with the specified cause and a detail message
which is null if the cause is null; otherwise the detail message is cause.toString().

Parameters:

cause - the cause of this exception

Class SdmRandomBytes
at.iaik.secricom.sdm

java.lang.Object

 at.iaik.secricom.sdm.SdmRandomBytes

public class SdmRandomBytes

extends Object

SdmRandomBytes represents an array of random bytes generated by the SDM's hardware random number
generator. The number of bytes generated in one go is restricted to a maximum of 4096 bits (512 bytes).

The SDM is equipped with a true random number generator which is internally used by the SDM for the
creation of nonces. Mobile devices which use the SDM and are not equipped with a TPM might profit
from using this source of randomness provided by the SDM. Therefore, the
SdmSession.getRandomBytes(int) command that grants access to this facility was added to the client
interface of the SDM.

See Also:

SdmSession.getRandomBytes(int)

Constructor Summary Page

SdmRandomBytes(byte[] randomBytes)

Constructs a new SdmRandomBytes with the specified byte[].
69

Method Summary Page
boolean equals(Object obj) 70
byte[] getRandomBytes() 70

int hashCode() 70
String toString() 70

Class SdmRandomBytes

5/22/09 Page 69

Constructor Detail

SdmRandomBytes

public SdmRandomBytes(byte[] randomBytes)
 throws SdmInvalidParameterException

Constructs a new SdmRandomBytes with the specified byte[].

Parameters:

randomBytes - the random bytes generated by the true random number generator of the
SDM. The byte array must be between 1 and 512 bytes long.

Throws:

SdmInvalidParameterException - if the specified byte[] is null, empty, or longer than 512
bytes.

Method Detail

getRandomBytes

public byte[] getRandomBytes()

Returns:

the random bytes generated by the true random number generator in the SDM. The
returned array is between 1 and 512 bytes long

hashCode

public int hashCode()

Overrides:

hashCode in class Object

equals

public boolean equals(Object obj)

Overrides:

equals in class Object

toString

public String toString()

Class SdmRandomBytes

5/22/09 Page 70

Overrides:

toString in class Object

Interface SdmSession
at.iaik.secricom.sdm

public interface SdmSession

An SdmSession (pronounced S-D-M Session) enables a client to communicate with the SDM. A client in
this context is a software entity that wants to use SDM functionality. The SdmSession specifically provides
the SDM user interface in contrast to the SDM administration interface (cf. SdmAdministrationSession).

The SdmSession grants access to the following functionalities:

• Generation of random nonce values, required for platform configuration verification:
createTpmNonce()

• Verification of the platform configuration: verifyConfiguration(SdmIdentifier, TpmQuote)
• Retrieval of an authorization token protected key: getKey(SdmIdentifier, SdmToken)
• Retrieval of a key that is only accessible in a specific platform configuration:

getKey(SdmIdentifier, TpmQuote)
• Access to a key that requires both a specific platform configuration and an authorization token to

be released to the host: getKey(SdmIdentifier, TpmQuote, SdmToken)
• A hardware based random number generator: getRandomBytes(int)

For platform state verification and key retrieval it is actually necessary to perform several steps. The first
step is to generate a nonce using the createTpmNonce() method. This nonce must be used to generate
the platform configuration report (TPM quote) required by the verifyConfiguration(SdmIdentifier,
TpmQuote), getKey(SdmIdentifier, TpmQuote), and getKey(SdmIdentifier, TpmQuote, SdmToken)
methods.

The SDM manages three types of keys. These types are distinguished by their protection mechanism. The
lowest level of protection is to use only an authorization token (cf. SdmToken). The second protection level
is to guarantee that the SDM host platform is in a specific platform state using the platforms TPM. The
highest level of security is achieved by protecting a key with both an authorization token and the
requirement of a specific state for key release.

It is very probable that an SDM will only be able to handle one session at the time. There should be a
central authority on the SDM host that manages access to the SDM. The close() method closes the
current SDM session and releases all SDM resources that depend on it. Subsequent calls to a closed
session object will cause an SdmException to be thrown.

See Also:

SecureDockingModule, SdmAdministrationSession

Interface SdmSession

5/22/09 Page 71

Method Summary Page
void close()

Close tells this SDM session to shut down and release all related resources.
77

TpmNonce createTpmNonce()

In order to guarantee the freshness of a TPM platform configuration report, a so
called TPM quote, external data must be provided to the TPM.

72

SdmKey getKey(SdmIdentifier keyId, SdmToken token)

Retrieves an authorization token protected key from the SDM.
74

SdmKey getKey(SdmIdentifier keyId, TpmQuote quote)

Retrieves a specified key from the SDM by providing a TPM signed platform
configuration report to the SDM.

75

SdmKey getKey(SdmIdentifier keyId, TpmQuote quote, SdmToken token)

Retrieves a specified key from the SDM by providing a TPM signed platform
configuration report and an authorization token to the SDM.

76

SdmRandomBytes getRandomBytes(int length)

Generates random bytes using the true random number generator included in
the SDM.

76

boolean verifiyConfigurationAndAuthorization(SdmIdentifier keyId, TpmQuote quote,
SdmToken token)

Tests if the specified configuration and authorization token grants access to the
specified key.

74

boolean verifyConfiguration(SdmIdentifier keyId, TpmQuote quote)

Tests if the specified configuration grants access to the specified key.
73

Method Detail

createTpmNonce

TpmNonce createTpmNonce()
 throws SdmException

In order to guarantee the freshness of a TPM platform configuration report, a so called TPM quote,
external data must be provided to the TPM. This external data is signed by the TPM together with
the current platform state. Such external data should be a random number. Uniqueness is a
requirement of the random number. Such a random number is called nonce. The required length
of 20 bytes ensures with a very high probability (enough for practical purposes) that it will be
unique, if a reliable random number generator is used. The SDM provides a hardware based
random number generator.

To use an SDM capability that requires an TPM quote it is first necessary to request a nonce using
this method. This nonce must be used in the next TPM quote supplied to the SDM. The current
nonce is not saved between sessions.

Interface SdmSession

5/22/09 Page 72

Returns:

a nonce suitable for use with the TPM quote operation.

Throws:

SdmException - if an SDM related error occurs.

verifyConfiguration

boolean verifyConfiguration(SdmIdentifier keyId,
 TpmQuote quote)

 throws SdmException

Tests if the specified configuration grants access to the specified key. Sometimes it is useful for a
client to enable the client to verify if a specific platform configuration is sufficient to release a
certain key, without actually requesting release of this key. This method serves this purpose.

Performing a platform verification is a three step process. First the createTpmNonce() method must
be called to create a nonce that must be used in the second step of the protocol: the creation of
the TPM quote. Calling the verifyConfiguration method is actually the last step in the process.

A call to verifyConfiguration verifies the configuration of the host system by analyzing the given
TPM quote. The verification is based on comparing the hash of the relevant PCRs contained in the
TPM quote with a set of valid platform configurations. Before this comparison takes place, the
SDM first verifies the signature over the TPM quote and if the last nonce requested with the
createTpmNonce() method was used in the creation of the TPM quote.

A last note: It is possible to verify the state only for keys that are only released in a specific state,
not for keys that require an authorization token. To be able to verify a key that requires both a
specific state and an authorization token the
verifiyConfigurationAndAuthorization(SdmIdentifier, TpmQuote, SdmToken) is provided.

Parameters:

keyId - the unique identifier of the key that should be released.

quote - the TPM signed report of the platform configuration.

Returns:

true if the given state would allow access to a platform state protected key, false
otherwise.

Throws:

SdmException - if an SDM related error occurs.

See Also:

createTpmNonce()

Interface SdmSession

5/22/09 Page 73

verifiyConfigurationAndAuthorization

boolean verifiyConfigurationAndAuthorization(SdmIdentifier keyId,
 TpmQuote quote,
 SdmToken token)

 throws SdmException

Tests if the specified configuration and authorization token grants access to the specified key.
Sometimes it is useful for a client to enable the client to verify if a specific platform configuration
and authorization token is sufficient to release a certain key, without actually requesting release of
this key. This method serves this purpose.

Performing a platform verification is a three step process. First the createTpmNonce() method must
be called to create a nonce that must be used in the second step of the protocol: the creation of
the TPM quote. Calling the verifyConfiguration method is actually the last step in the process.

A call to verifyConfiguration verifies the configuration of the host system by analyzing the given
TPM quote. The verification is based on comparing the hash of the relevant PCRs contained in the
TPM quote with a set of valid platform configurations. Before this comparison takes place, the
SDM first verifies the signature over the TPM quote and if the last nonce requested with the
createTpmNonce() method was used in the creation of the TPM quote.

A last note: With this method it is possible to verify the state for keys that are protected by a
specific state and an authorization token. To verify a key that requires only a specific
configuration the verifiyConfigurationAndAuthorization(SdmIdentifier, TpmQuote, SdmToken)
is provided.

Parameters:

keyId - the unique identifier of the key that should be released.

quote - the TPM signed report of the platform configuration.

token - the authorization token that would be required to release the key.

Returns:

true if the given configuration and authorization token would allow access to a platform
state protected key, false otherwise.

Throws:

SdmException

getKey

SdmKey getKey(SdmIdentifier keyId,
 SdmToken token)

 throws SdmException

Retrieves an authorization token protected key from the SDM. Key release is simple compared to
the release mechanism based on platform configuration. No beforehand call to
createTpmNonce() is necessary.

Interface SdmSession

5/22/09 Page 74

Parameters:

keyId - the unique identifier of the requested key.

token - the authorization token that grants access to the key.

Returns:

the key if authorization was successful.

Throws:

SdmException - if an SDM related problem occurs, or the authorization token is insufficient.

getKey

SdmKey getKey(SdmIdentifier keyId,
 TpmQuote quote)

 throws SdmException

Retrieves a specified key from the SDM by providing a TPM signed platform configuration report to
the SDM.

Performing a platform verification based key release is a three step process. First the
createTpmNonce() method must be called to create a nonce that must be used in the second
step of the protocol: the creation of the TPM quote. Calling the getKey method is actually the last
step in the process.

A call to getKey verifies the configuration of the host system by analyzing the given TPM quote.
The verification is based on comparing the hash of the relevant PCRs contained in the TPM quote
with a set of valid platform configurations. Before this comparison takes place, the SDM first
verifies the signature over the TPM quote and if the last nonce requested with the
createTpmNonce() method was used in the creation of the TPM quote.

A last note: With this method it is not possible to retrieve keys that are protected by a specific
configuration and an authorization token. For this the verifiyConfigurationAndAuthorization(
SdmIdentifier, TpmQuote, SdmToken) method is provided.

Parameters:

keyId - the unique identifier of the requested key.

quote - the TPM signed report of the platform configuration.

Returns:

the key if the platform configuration is valid.

Throws:

SdmException - if an SDM related problem occurs, or the platform configuration is invalid.

Interface SdmSession

5/22/09 Page 75

getKey

SdmKey getKey(SdmIdentifier keyId,
 TpmQuote quote,
 SdmToken token)

 throws SdmException

Retrieves a specified key from the SDM by providing a TPM signed platform configuration report
and an authorization token to the SDM.

Performing a platform verification based key release is a three step process. First the
createTpmNonce() method must be called to create a nonce. This nonce must be used in the
second step of the protocol: the creation of the TPM quote. Calling this getKey method is actually
the last step in the process.

A call to this getKey verifies the configuration of the host system by analyzing the given TPM quote.
The verification is based on comparing the hash of the relevant PCRs contained in the TPM quote
with a set of valid platform configurations. Before this comparison takes place, the SDM first
verifies the signature over the TPM quote and if the last nonce requested with the
createTpmNonce() method was used in the creation of the TPM quote.

A last note: With this method it is not possible to retrieve keys that are protected solely by a
specific configuration. For this the verifiyConfigurationAndAuthorization(SdmIdentifier,
TpmQuote, SdmToken) method is provided.

Parameters:

keyId - the unique identifier of the requested key.

quote - the TPM signed report of the platform configuration.

Returns:

the key if the platform configuration is valid.

Throws:

SdmException - if an SDM related problem occurs, or the platform configuration is invalid.

getRandomBytes

SdmRandomBytes getRandomBytes(int length)
 throws SdmException

Generates random bytes using the true random number generator included in the SDM.

Parameters:

length - the number of random bytes; it must not exceed 4096 bits (512 bytes).

Returns:

an SdmRandomBytes object containing the random bytes generated by the SDM's true
random number generator

Interface SdmSession

5/22/09 Page 76

Throws:

SdmException - if an SDM related problem occurs

See Also:

SdmRandomBytes

close

void close()
 throws SdmException

Close tells this SDM session to shut down and release all related resources.

Throws:

SdmException - if an SDM related problem occurs.

Interface SdmStatus
at.iaik.secricom.sdm

public interface SdmStatus

SdmStatus indicates the operation status of the SDM. An SDM only accepts one active session at the time.
To find out if the SDM is active a status request must be send to the SDM. A status request is always
accepted and answered by the SDM, even if it is in an active session.

Nested Class Summary Page
static

enum
SdmStatus.Status

Status represents the current status of the SDM.
78

Method Summary Page
SdmStatus.Status getStatus() 77

Method Detail

getStatus

SdmStatus.Status getStatus()

Returns:

the Status of the SDM

Interface SdmStatus

5/22/09 Page 77

Enum SdmStatus.Status
at.iaik.secricom.sdm

java.lang.Object

 java.lang.Enum<SdmStatus.Status>

 at.iaik.secricom.sdm.SdmStatus.Status

All Implemented Interfaces:
Comparable<SdmStatus.Status>, Serializable

Enclosing class:
SdmStatus

public static enum SdmStatus.Status

extends Enum<SdmStatus.Status>

Status represents the current status of the SDM. From a clients perspective the SDM is either
UNINITIALIZED, IDLE, or IN_SESSION..

Enum Constant Summary Page

IDLE 79

IN_SESSION 79

UNINITIALIZED 78

Method Summary Page
static

SdmStatus.Status
valueOf(String name) 79

static
SdmStatus.Status[]

values() 79

Enum Constant Detail

UNINITIALIZED

public static final SdmStatus.Status UNINITIALIZED

IDLE

public static final SdmStatus.Status IDLE

Enum SdmStatus.Status

5/22/09 Page 78

IN_SESSION

public static final SdmStatus.Status IN_SESSION

Method Detail

values

public static SdmStatus.Status[] values()

valueOf

public static SdmStatus.Status valueOf(String name)

Class SdmToken
at.iaik.secricom.sdm

java.lang.Object

 at.iaik.secricom.sdm.SdmToken

public class SdmToken

extends Object

SdmToken are authorization tokens that grant access to certain keys. The SDM provides three different
mechanisms to protect a key. Two of them (ATP and APCP) (see SdmKey) require an authorization token.
A SDM authorization token is a byte array with a maximum length of 20 bytes.

Constructor Summary Page

SdmToken(byte[] authToken)

Constructs a new SdmToken with the specified byte[] encoded authorization information.
80

Method Summary Page
boolean equals(Object obj) 80
byte[] getAuthorizationToken() 80

int hashCode() 80
String toString() 80

Constructor Detail

SdmToken

public SdmToken(byte[] authToken)
 throws SdmInvalidParameterException

Class SdmToken

5/22/09 Page 79

Constructs a new SdmToken with the specified byte[] encoded authorization information. The
byte[] must not be null and must not be longer than 20 bytes.

Parameters:

authToken - the authorization token encoded as a byte[] of a maximum length of 20 bytes.

Throws:

SdmInvalidParameterException - if the specified token is null, or longer than 20 bytes.

Method Detail

getAuthorizationToken

public byte[] getAuthorizationToken()

Returns:

the authorization token, which is a byte[] with a maximum length of 20 bytes.

hashCode

public int hashCode()

Overrides:

hashCode in class Object

equals

public boolean equals(Object obj)

Overrides:

equals in class Object

toString

public String toString()

Overrides:

toString in class Object

Class SdmUnknownKeyException

5/22/09 Page 80

Class SdmUnknownKeyException
at.iaik.secricom.sdm

java.lang.Object

 java.lang.Throwable

 java.lang.Exception

 at.iaik.secricom.sdm.SdmException

 at.iaik.secricom.sdm.SdmUnknownKeyException

All Implemented Interfaces:
Serializable

public class SdmUnknownKeyException

extends SdmException

SdmUnknownKeyException indicates that an SDM operation failed because it tried to operate on a key that
is not known to the SDM in the specified context.

Constructor Summary Page

SdmUnknownKeyException()

Constructs a new SdmUnknownKeyException with null as its detail message.
81

SdmUnknownKeyException(String message)

Constructs a new SdmUnknownKeyException with the specified detail message.
82

SdmUnknownKeyException(String message, Throwable cause)

Constructs a new SdmUnknownKeyException with the specified detail message and cause.
82

SdmUnknownKeyException(Throwable cause)

Constructs a new SdmUnknownKeyException with the specified cause and a detail message
which is null if the cause is null; otherwise the detail message is cause.toString().

82

Constructor Detail

SdmUnknownKeyException

public SdmUnknownKeyException()

Constructs a new SdmUnknownKeyException with null as its detail message. The cause cause is not
initialized. A call to the initCause(Throwable) method may be used to initialize the cause after
exception creation.

Class SdmUnknownKeyException

5/22/09 Page 81

SdmUnknownKeyException

public SdmUnknownKeyException(String message,
 Throwable cause)

Constructs a new SdmUnknownKeyException with the specified detail message and cause.

Parameters:

message - the detail message

cause - the cause. A null value is permitted and indicates that the cause is nonexistent or
unknown.

SdmUnknownKeyException

public SdmUnknownKeyException(String message)

Constructs a new SdmUnknownKeyException with the specified detail message. The cause cause is
not initialized. A call to the initCause(Throwable) may be used to initialize the cause after
exception creation.

Parameters:

message - the detail message

SdmUnknownKeyException

public SdmUnknownKeyException(Throwable cause)

Constructs a new SdmUnknownKeyException with the specified cause and a detail message which
is null if the cause is null; otherwise the detail message is cause.toString().

Parameters:

cause - the cause of this exception

Interface SdmVersion
at.iaik.secricom.sdm

public interface SdmVersion

SdmVersion defines the version of the SDM. The versions system of the SDM distinguishes between major
version and minor version. A major version change signals a change in the binary command interface of
the Secure Docking Module hardware module, whereas a minor versions change indicates a revision of
the SDM implementation.

Interface SdmVersion

5/22/09 Page 82

Method Summary Page
int getMajor()

The major version of the SDM hardware module.
83

int getMinor()

The minor version of the SDM hardware module.
83

Method Detail

getMajor

int getMajor()

The major version of the SDM hardware module. Internally the SDM uses a byte to represent this
number, so the value of the version must lie between 0 and 255.

Returns:

the major version of the SDM

getMinor

int getMinor()

The minor version of the SDM hardware module. Internally the SDM uses a byte to represent this
number, so the value of the version must lie between 0 and 255.

Returns:

the minor version of the SDM

Interface SecureDockingModule
at.iaik.secricom.sdm

public interface SecureDockingModule

SecureDockingModule manages access to the functionalities provided by a Secure Docking Module. It
provides access to both the client and administrative capabilities of the SDM and manages SDM session
establishment.

The Secure Docking Module is a hardware local-attestation-token. It protects secrets, and these secrets
are only revealed if the host platform is in a trusted state. For a description of the functionality that is
available as part of the SDM client interface see SdmSession.

Apart from this basic functionality it must also provide support for maintenance. Maintenance includes
updating the key material and updating the valid platform configurations, as well as adding new hosts,

Interface SecureDockingModule

5/22/09 Page 83

new key material, and new configurations. For a detailed description of the administrative interface see
SdmAdministrationSession.

In order to communicate with the SDM an end-to-end secure session must be established. This requires
mutual authentication between the SDM and the host platform. The createSession methods provided by
this interface hide the complexities behind the session establishment protocols.

The SecureDockingModule provides the entry points into both the client and the administrative interface of
the SDM. In order to use the SDM client functionality it is necessary to create an SdmSession. This is done
with the createSession(SdmIdentifier, RSAPrivateKey) command. To administer the SDM a
SdmAdministrationSession must be created. For this the createAdministrationSession(SdmIdentifier,
RSAPrivateKey) method is provided.

It is important to note that the SDM only allows one active session. It is not possible to initiate any kind of
new session with the SDM if the SDM is already in any kind of session.

See Also:

SdmSession, SdmAdministrationSession

Method Summary Page
SdmAdministrationSession createAdministrationSession(SdmIdentifier adminHostid, RSAPrivateKey

hak)

Prepares an administration session with the SDM which provides
access to the SDM administration interface.

87

SdmSession createSession(SdmIdentifier hostId, RSAPrivateKey hak)

Prepares a client session with the SDM and thus grant access to the
client specific SDM functionality.

86

SdmIdentifier getIdentifier()

Returns the unique identifier of the SDM.
85

PublicKey getSdmAuthenticationKey()

Returns the public part of the unique SDM Authentication Key pair of
the SDM.

86

SdmStatus getStatus()

Returns the current status of the SDM.
85

SdmVersion getVersion()

Returns the version of the SDM.
85

Method Detail

getVersion

SdmVersion getVersion()
 throws SdmException

Interface SecureDockingModule

5/22/09 Page 84

Returns the version of the SDM. The version of the SDM is split into a major ordinal and a minor
ordinal. Both numbers are bytes, which theoretically allows for 65536 different version. A change in
the major number indicates that the binary command interface of the SDM was changed,
whereas a minor number change symbolizes an internal revision of the SDM.

Returns:

the SdmVersion

Throws:

SdmException - if an SDM related exception occurs

getStatus

SdmStatus getStatus()
 throws SdmException

Returns the current status of the SDM. From a clients perspective the SDM can only be in one of
three states. It could be UNINITIALIZED, IDLE, or IN_SESSION. The SDM only accepts a session
request if it is IDLE. The SDM only allows one session at any given time.

Returns:

the SdmStatus

Throws:

SdmException - if an SDM related exception occurs

getIdentifier

SdmIdentifier getIdentifier()
 throws SdmException

Returns the unique identifier of the SDM. In order to be able to establish a session the session
initiation request must be encrypted using the public part of the SDM Authentication Key pair.
Each SDM has its own unique authentication key and thus its own identity. In order to know with
which SDM the client is communicating, this function can be called.

Returns:

the unique identifier of the SDM

Throws:

SdmException

Interface SecureDockingModule

5/22/09 Page 85

getSdmAuthenticationKey

PublicKey getSdmAuthenticationKey()
 throws SdmException

Returns the public part of the unique SDM Authentication Key pair of the SDM. Each SDM has its
own SDM Authentication Key and thus its own identity. The public SDM Authentication Key is
required during session establishment.

Returns:

the public part of the SDM Authentication Key, which is a 2048-bit RSA key pair

Throws:

SdmException

createSession

SdmSession createSession(SdmIdentifier hostId,
 RSAPrivateKey hak)

 throws SdmException

Prepares a client session with the SDM and thus grant access to the client specific SDM
functionality. For details on the client specific capabilities of the SDM refer to SdmSession.

A call to the createSession method instructs the SDM interface library to lock access to the SDM
and prepare a connection. To actually establish the SDM session a call to the connect method of
the SdmSession is required. An SDM session requires mutual authentication between the SDM and
the host. In order to enable host authentication a Host Authentication Key (HAK) must be
specified. This HAK must be previously inserted into the SDM. The key pre-sharing is a responsibility
of the SDM issuing organization.

A SDM can support multiple hosts, it is therefore necessary to instruct the SDM which host wants to
establish a connection to it. Host identification and the HAK must match, otherwise session
establishment fails.

Parameters:

hostId - identifies the host that wants to establish an SDM session

hak - authenticates the host that wants to establish an SDM session HAK and hostId must
match; otherwise session establishment will fail.

Returns:

an SdmSession object that grants access to the SDM client specific capabilities.

Throws:

SdmException - if session establishment with the SDM fails.

See Also:

SdmSession

Interface SecureDockingModule

5/22/09 Page 86

createAdministrationSession

SdmAdministrationSession createAdministrationSession(SdmIdentifier adminHostid,
 RSAPrivateKey hak)

 throws SdmException

Prepares an administration session with the SDM which provides access to the SDM administration
interface. For details of the administrative interface of the SDM see SdmAdministrationSession.

This method prepares a session with the SDM and locks the SDM. The establishment of an
administration session a complex process. To actually connect to the TPM is is necessary to
perform several steps. Some of the required operations, like the attestation of the platform, are
out of scope of this API. Therefore, it is not possible to completely hide the complexity of the
session establishment process. These necessary operations are covered by the
SdmAdministrationSession class in more detail.

Parameters:

adminHostid - identifies the host that wants to connect to the SDM to perform SDM
administration

hak - authenticates the host that wants to administer the SDM

Returns:

an SdmAdministrationSession object that provides access to the administration interface
of the SDM.

Throws:

SdmException - if an SDM error occurs.

See Also:

SdmAdministrationSession

Class TpmNonce
at.iaik.secricom.sdm

java.lang.Object

 at.iaik.secricom.sdm.TpmNonce

public class TpmNonce

extends Object

TpmNonce represents a 20 bytes long nonce used in a TPM quote operation. To guarantee that a TPM
quote is fresh the verifier, in this case the SDM, generates a random number 20 bytes long. This number is
included in the signed platform configuration report created by the TPM quote operation. This number
must only be used once, hence the name nonce.

Class TpmNonce

5/22/09 Page 87

Constructor Summary Page

TpmNonce(byte[] nonce)

Constructs new TpmNonce from the specified byte[].
88

Method Summary Page
boolean equals(Object obj) 89
byte[] getNonce() 88

int hashCode() 89
String toString() 89

Constructor Detail

TpmNonce

public TpmNonce(byte[] nonce)
 throws SdmInvalidParameterException

Constructs new TpmNonce from the specified byte[]. This byte[] array must be exactly 20 bytes long
and these bytes should be randomly generated. This constructor creates a defensive copy of the
given byte array to prevent modifications.

Parameters:

nonce - the byte data that should serve as a nonce in a TPM quote operation

Throws:

SdmInvalidParameterException - if the specified byte[] is either null or not exactly 20 bytes
long.

Method Detail

getNonce

public byte[] getNonce()

Returns:

the randomly generated byte[] data to serve as a nonce in a TPM quote operation.

hashCode

public int hashCode()

Overrides:

hashCode in class Object

Class TpmNonce

5/22/09 Page 88

equals

public boolean equals(Object obj)

Overrides:

equals in class Object

toString

public String toString()

Overrides:

toString in class Object

Class TpmQuote
at.iaik.secricom.sdm

java.lang.Object

 at.iaik.secricom.sdm.TpmQuote

public class TpmQuote

extends Object

TpmQuote represents a signed TPM quote info data structure. It consists of a byte[] representing the quote
info data structure itself and a byte[] containing the RSASSA-PKCS-v1.5 using SHA-1 signature over the
TPM quote info structure.

Constructor Summary Page

TpmQuote(byte[] quoteInfo, byte[] signature)

Constructs a new TpmQuote from a specified TPM quote info and signature.
90

Method Summary Page
boolean equals(Object obj) 91
byte[] getQuoteInfo() 90
byte[] getSignature() 91

int hashCode() 91
String toString() 91

Class TpmQuote

5/22/09 Page 89

Constructor Detail

TpmQuote

public TpmQuote(byte[] quoteInfo,
 byte[] signature)

 throws SdmInvalidParameterException

Constructs a new TpmQuote from a specified TPM quote info and signature. This constructor
creates defensive copies of the specified parameters. A TPM quote info must be exactly 48 bytes
long.

Parameters:

quoteInfo - the quote info that is signed with the specified signature

signature - the signature over the specified TPM quote info

Throws:

SdmInvalidParameterException - if any of the specified parameters is null, or the TPM
quote info structure is not exactly 48 bytes long, or the signature is not exactly 128 bytes
long, or if the TPM quote info structure does not start with
"0x01,0x01,0x00,0x00,0x81,0x85,0x79,0x84" (1100QUOT).

Method Detail

getQuoteInfo

public byte[] getQuoteInfo()

Returns:

a defensive copy of the TPM quote info data structure

getSignature

public byte[] getSignature()

Returns:

a defensive copy of the signature over the quote info TPM data structure

hashCode

public int hashCode()

Overrides:

hashCode in class Object

Class TpmQuote

5/22/09 Page 90

equals

public boolean equals(Object obj)

Overrides:

equals in class Object

toString

public String toString()

Overrides:

toString in class Object

Class Util
at.iaik.secricom.sdm

java.lang.Object

 at.iaik.secricom.sdm.Util

public class Util

extends Object

Util is a set of utility methods that support the SDM interface with functions like byte[] pretty printing, a
factory method for TPM quote info data structures etc..

Constructor Summary Page

Util() 92

Method Summary Page
static
String

formatByteArray(byte[] data, int bytesPerRow)

Pretty prints a given byte array into a formated output string with a specified
number of bytes per row.

92

static
TpmQuote

generateTpmQuote(Signature sign, RSAPrivateKey aik, byte[] quoteInfo)

Signs the specified TPM quote info data structure given as a byte array with the
specified private RSA key and the given signature object.

93

static
byte[]

generateTpmQuoteInfo(byte[] conf, byte[] nonce)

Generates a TPM quote info data structure conforming byte array.
92

Class Util

5/22/09 Page 91

static
void

testNull(Object obj, String name)

Tests if the specified object is null.
94

Constructor Detail

Util

public Util()

Method Detail

formatByteArray

public static String formatByteArray(byte[] data,
 int bytesPerRow)

Pretty prints a given byte array into a formated output string with a specified number of bytes per
row. Each byte is printed in hexadecimal format.

Parameters:

data - the byte[] to format

bytesPerRow - the number of bytes one line of text should contain

Returns:

a formatted string representing the given byte[]

generateTpmQuoteInfo

public static byte[] generateTpmQuoteInfo(byte[] conf,
 byte[] nonce)

Generates a TPM quote info data structure conforming byte array. A TPM quote info is the data
structure that is signed by the TPM, when performing a TPM quote operation.The exact nature of
the quote info structure is outlined in the TPM specification. Basically it consists of a version
identifier, a data structure identifier, the SHA-1 hash of the platform configuration and a so called
external value that should be a nonce to guarantee the freshness of the quote. A TPM quote info
is exactly 48 bytes long.

Parameters:

conf - the PCR composite hash. This is 20 byte SHA-1 hash of the PCRs selected for the
platform quote.

nonce - an externally supplied nonce that guarantees that the TPM quote is fresh.

Returns:

the quote info structure.

Class Util

5/22/09 Page 92

generateTpmQuote

public static TpmQuote generateTpmQuote(Signature sign,
 RSAPrivateKey aik,

 byte[] quoteInfo)
 throws InvalidKeyException,

 SignatureException,
 SdmInvalidParameterException

Signs the specified TPM quote info data structure given as a byte array with the specified private
RSA key and the given signature object. This method creates a fake TpmQuote object which can
be used for testing the SDM functionality. The TPM uses RSA-SSA-v1.5 with SHA-1 for quote
signature creation.

Parameters:

sign - the signature object to use to sign the quote info data structure.

aik - the attestation identity key that is used for the signature

quoteInfo - the quote info data structure to sign

Returns:

a TpmQuote that contains both the quote info data structure as well as the signature.

Throws:

InvalidKeyException - if the provided key is not compatible with the specified signature
object.

SignatureException - if signing the data fails.

SdmInvalidParameterException - If the given TPM quote info data structure is not exactly
48 bytes long.

testNull

public static void testNull(Object obj,
 String name)

 throws SdmInvalidParameterException

Tests if the specified object is null. If this is the case, an SdmInvalidParameterException is thrown
with the following message format as exception message: "The specified {0} is null." . The
{0} parameter is substituted with the specified name.

Parameters:

obj - the object to test if it is null

name - the human identifiable name of the object

Class Util

5/22/09 Page 93

Throws:

SdmInvalidParameterException - if the specified object is null

Package at.iaik.secricom.sdm.admin

Interface Summary Page

ConfigurationProtectedKey ConfigurationProtectedKey is an SdmKey implementing the platform
configuration dependent key release protection mechanism.

95

SdmAdministrationSession SdmAdministrationSession grants access to the administration
interface of the Secure Docking Module (SDM).

100

SdmHost
SdmHost manages all the information the SDM needs to communicate
with a host and verify the signature on the host's TPM's platform
configuration reports.

105

TokenProtectedKey TokenProtectedKey is a key, the release of which is at least protected
by an authorization token.

111

Class Summary Page

HostConfiguration HostConfiguration represents a valid platform configuration. 98

Exception Summary Page

SdmUnknownHostException SdmUnknownHostException indicates that an SDM operation failed,
because it tried to operate on an unknown SDM host.

108

Interface ConfigurationProtectedKey
at.iaik.secricom.sdm.admin

All Superinterfaces:
SdmKey

public interface ConfigurationProtectedKey

extends SdmKey

ConfigurationProtectedKey is an SdmKey implementing the platform configuration dependent key
release protection mechanism. ConfigurationProtectedKey is part of the administration interface of the
SDM and provides methods to manage a set of valid platform configurations (HostConfigurations).

The SDM provides three different key protection mechanisms:

• Platform Configuration Protected keys are only released to the client if the client can proof that it
is an well defined, and previously set up state (platform configuration). A TPM provides the

Interface ConfigurationProtectedKey

5/22/09 Page 94

capabilities to measure the clients platform state and provide a signature on the clients platform
configuration report, the so-called quote. The platform configuration is represented in the TPM by
Platform Configuration Registers PCRs. A quote provides a signature on a SHA-1 hash of several
selected PCRs. This SHA-1 hash is represented by a HostConfiguration and verified by the SDM. A
ConfigurationProtectedKey provides facilities to add, remove and test the existence of such
HostConfigurations.

• Authorization Token Protected (ATP) keys are protected by an authorization token (SdmToken), that
is a password. The key is only released if the client can supply an authorization token that matches
the authorization token in the SDM. This method is useful if the host platform does not provide the
capabilities to create a signed platform configuration report, but a user is present and can
provide a password.

• Authorized Platform Configuration Protected keys combine the two former methods. A key is only
released if the platform is in a certain state and if the client can provide an authorization token.

Each key is associated with a specific SdmHost object. In order to look up a key in the SDM it is necessary
to know both, the unique identifier of the host and the unique identifier of the key. The library
implementation must hide this complexity from the client, as far as possible. An exception to this rule is
that an implementation is allowed to throw exceptions that signal error conditions pertaining to missing
SDM objects.

See Also:

HostConfiguration, SdmKey, SdmToken

Nested classes/interfaces inherited from interface at.iaik.secricom.sdm.SdmKey
SdmKey.Type

Method Summary Page
void addHostConfiguration(HostConfiguration config)

Adds a new HostConfiguration.
96

boolean containsHostConfiguration(HostConfiguration config)

Tests if this key already contains the specified HostConfiguration.
96

Set<HostConfiguration> getHostConfigurationIdentifiers()

Lists all HostConfiguration known to this key.
97

boolean removeHostConfiguration(HostConfiguration config)

Removes a HostConfiguration from this key.
97

Methods inherited from interface at.iaik.secricom.sdm.SdmKey
getKeyIdentifier, getSdmKeyMaterial, getType

Interface ConfigurationProtectedKey

5/22/09 Page 95

Method Detail

addHostConfiguration

void addHostConfiguration(HostConfiguration config)
 throws SdmException

Adds a new HostConfiguration. By adding the HostConfiguration to the
ConfigurationProtectedKey , it will release its protected key to any host that can proof that it is in
the specified platform configuration.

Parameters:

config - the new HostConfiguration to add

Throws:

SdmException - if any other SDM related error occurs

SdmUnknownHostException - if the SDM can't find the parent host of this key

SdmUnknownKeyException - if the SDM can't find this key

SdmInvalidKeyTypeException - if the key does not support this protection mechanism

SdmInvalidParameterException - if the specified HostConfiguration is null

containsHostConfiguration

boolean containsHostConfiguration(HostConfiguration config)
 throws SdmException

Tests if this key already contains the specified HostConfiguration.

Parameters:

config - the HostConfiguration to test for

Returns:

true if the HostConfiguration is known to this key, false otherwise

Throws:

SdmException - if any other SDM related error occurs

SdmUnknownHostException - if the SDM can't find the parent host of this key

SdmUnknownKeyException - if the SDM can't find this key

SdmInvalidKeyTypeException - if the key does not support this protection mechanism

SdmInvalidParameterException - if the specified HostConfiguration is null

Interface ConfigurationProtectedKey

5/22/09 Page 96

removeHostConfiguration

boolean removeHostConfiguration(HostConfiguration config)
 throws SdmException

Removes a HostConfiguration from this key. By removing the HostConfiguration the key will not
be released to platforms in this platform configuration any more.

Parameters:

config - the HostConfiguration to remove

Returns:

true if the HostConfiguration was successfully removed, false otherwise

Throws:

SdmException - if any other SDM related error occurs

SdmUnknownHostException - if the SDM can't find the parent host of this key

SdmUnknownKeyException - if the SDM can't find this key

SdmInvalidKeyTypeException - if the key does not support this protection mechanism

SdmInvalidParameterException - if the specified HostConfiguration is null

getHostConfigurationIdentifiers

Set<HostConfiguration> getHostConfigurationIdentifiers()
 throws SdmException

Lists all HostConfiguration known to this key.

Returns:

an immutable list of HostConfigurations known to this key

Throws:

SdmException - if any other SDM related error occurs

SdmUnknownHostException - if the SDM can't find the parent host of this key

SdmUnknownKeyException - if the SDM can't find this key

SdmInvalidKeyTypeException - if the key does not support this protection mechanism

SdmInvalidParameterException - if the specified HostConfiguration is null

Class HostConfiguration

5/22/09 Page 97

Class HostConfiguration
at.iaik.secricom.sdm.admin

java.lang.Object

 at.iaik.secricom.sdm.admin.HostConfiguration

public class HostConfiguration

extends Object

HostConfiguration represents a valid platform configuration. A valid platform configuration is
represented a 20 bytes long array of bytes. A valid platform configuration is measured by using a
platforms TPM and building a chain of trust. In a platform quote operation the TPM signs a SHA-1 hash of
all selected Platform Configuration Registers which in turn contain SHA-1 hashes that represent a platform
configuration. A valid platform configuration is just such a SHA-1 hash of a set of PCRs.

During key release of a configuration protected key the SDM compares the set of valid platform
configurations associated with such a key with the data send in the TPM quote operation.

Constructor Summary Page

HostConfiguration(byte[] configuration)

Constructs a new HostConfiguration with the specified configuration byte[].
99

Method Summary Page
boolean equals(Object obj) 99
byte[] getConfiguration() 99

int hashCode() 99
String toString() 99

Constructor Detail

HostConfiguration

public HostConfiguration(byte[] configuration)
 throws SdmInvalidParameterException

Constructs a new HostConfiguration with the specified configuration byte[]. A valid platform
configuration is a 20 bytes SHA-1 hash.

Parameters:

configuration - the 20 bytes SHA-1 hash representing the valid platform configuration

Class HostConfiguration

5/22/09 Page 98

Method Detail

getConfiguration

public byte[] getConfiguration()

Returns:

the 20 bytes SHA-1 hash representing the valid platform configuration

hashCode

public int hashCode()

Overrides:

hashCode in class Object

equals

public boolean equals(Object obj)

Overrides:

equals in class Object

toString

public String toString()

Overrides:

toString in class Object

Interface SdmAdministrationSession
at.iaik.secricom.sdm.admin

public interface SdmAdministrationSession

SdmAdministrationSession grants access to the administration interface of the Secure Docking Module
(SDM).

The SDM administration interface includes functions to add new hosts, new protected keys and new valid
configurations, as well as functions to update and remove existing values.

Interface SdmAdministrationSession

5/22/09 Page 99

An SDM host is an entity with a unique identifier, its own Host Authentication Key (HAK) and a specific
Attestation Identity Key (AIK). An SDM protected key is a binary data blob with an unique identifier. Such
a key must be protected by either an authorization token or a specific platform configuration, or both.

These objects (hosts, keys, authorization tokens, and valid platform configurations are grouped
hierarchically. A host contains keys. A key may contain valid platform configuration values, or an
authorization token, or both.

The interface of the SdmAdministrationSession reflects this hierarchical data structure. It provides access
methods to SdmHosts to add, get, list, and remove hosts. Hosts are identified by their unique id.

As a security measure to protect an SDM administration session, only one host in a specific configuration
is allowed to administer the SDM. This administration host must be injected into the SDM after fabrication,
but before issuing it to a user. An administration host specifies a certain HAK, AIK and valid platform
configuration state.

In order to establish an administration session, a shared session key is negotiated to protect the
communication between the host and the SDM using the premeditated HAK. After this the host must
perform a TPM quote to prove its platform state. This quote must then be send to the SDM. Only if the
quote is deemed valid by the SDM the session is actually established.

Method Summary Page
SdmHost addSdmHost(SdmIdentifier hostId, RSAPublicKey hak, RSAPublicKey aik)

Adds a new host to the SDM.
102

void close()

Closes this SDM session and releases all related resources.
104

void establish(TpmQuote quote)

Establishes an administration session.
101

Set<SdmIdentifier> getHostIdentifiers()

Lists all host identifiers known to the SDM.
102

SdmHost getSdmHost(SdmIdentifier hostId)

Retrieves the SdmHost with the specified unique identifier from the SDM.
103

TpmNonce initiate()

Initiates an administration session establishment with the SDM.
101

boolean removeSdmHost(SdmIdentifier hostId)

Removes the SdmHost with the specified unique identifier from the SDM.
103

void setAdministrationHost(SdmIdentifier id, RSAPublicKey hak, RSAPublicKey
aik, HostConfiguration conf)

Specifies a new administration host.
104

Interface SdmAdministrationSession

5/22/09 Page 100

Method Detail

initiate

TpmNonce initiate()
 throws SdmException

Initiates an administration session establishment with the SDM. Calling this method opens a
connection to the SDM and negotiates a shared session secret using the Host Authentication Key
specified at creation of this SdmAdministrationSession. Furthermore, the SDM sends back a
nonce. This nonce must be used in the next step of the session establishment process, the
attestation of the platform state by the hosts TPM. To actually establish an administration session it
is necessary to call establish(TpmQuote) with the TPM quote obtained before.

Returns:

an TpmNonce for use with the TPM's quote operation.

Throws:

SdmException - If an SDM related problem occurs.

See Also:

establish(TpmQuote)

establish

void establish(TpmQuote quote)
 throws SdmException

Establishes an administration session. After a successful call to this method an administration
session is ready for use. Must be called after a successful call to the initiate() method.

The specified TPM quote is forwarded to the SDM. The SDM verifies the signature on the quote
using the pre-shared public part of the AIK. If the signature is correct the SDM checks if the nonce
is the same nonce that must have been previously obtained by a call to the initiate() method. In
a last verification step the actual platform configuration contained by the quote is compared to
the valid platform state of the programming host. Only if all three checks succeed, an
administration session with the SDM is established.

Parameters:

quote - the TPM signed platform configuration report

Throws:

SdmException - if an SDM error occurs.

See Also:

initiate()

Interface SdmAdministrationSession

5/22/09 Page 101

getHostIdentifiers

Set<SdmIdentifier> getHostIdentifiers()
 throws SdmException

Lists all host identifiers known to the SDM. This operation could either directly communicate with
the SDM or read all host identifiers at session establishment. Regardless of this implementation
detail the given list should always be up-to-date and must contain all hosts stored on the SDM.

Returns:

a list of host identifiers known to the SDM.

Throws:

SdmException

addSdmHost

SdmHost addSdmHost(SdmIdentifier hostId,
 RSAPublicKey hak,
 RSAPublicKey aik)

 throws SdmException

Adds a new host to the SDM. In case that a host with the same unique identifier is already stored
on the SDM the values of this host must be updated. This operation must communicate directly
with the SDM and immediately store the new information on the SDM. Caching of this operation
by an implementation is not allowed!

It is important to note that adding a host will only update or store values that directly pertain to
the host, specifically this includes its unique identifier, its authentication key (HAK) and its AIK.
Therefore, it is not possible to add an SdmHost object.

Parameters:

hostId - unique identifier of the host that should be created, or updated

hak - Host Authentication Key, must match hostId

aik - Attestation Identity Key the hosts uses to sign its platform quotes

Returns:

an SdmHost object that reflects the specified values regardless if an old host with the same
identifier already existed. Such old values are lost. The SdmHost is likewise directly
connected to the SDM and will store all changes immediately to the SDM.

Throws:

SdmException - if an SDM error occurs during writing of the host values.

See Also:

SdmHost

Interface SdmAdministrationSession

5/22/09 Page 102

getSdmHost

SdmHost getSdmHost(SdmIdentifier hostId)
 throws SdmException

Retrieves the SdmHost with the specified unique identifier from the SDM. The thus created SdmHost
object must be directly linked to the SDM. Specifically, any changes made to the host object
must be directly written to the SDM.

Parameters:

hostId - unique identifier of the host

Returns:

the SdmHost object for the specified unique identifier, or null if no host with the specified
identifier exists.

Throws:

SdmException - if an SDM error occurs during reading from the SDM.

See Also:

SdmHost

removeSdmHost

boolean removeSdmHost(SdmIdentifier hostId)
 throws SdmException

Removes the SdmHost with the specified unique identifier from the SDM. The target SdmHostmust
be empty, that is it must not contain any protected keys, before it can be removed. Calling this
method on an non-empty host will cause an exception.

Parameters:

hostId - unique identifier of the host to remove

Returns:

true if the host existed and was empty and was successfully removed; false if the host did
not exist at all.

Throws:

SdmException - if an SDM error occurs, or if the host is not empty.

Interface SdmAdministrationSession

5/22/09 Page 103

setAdministrationHost

void setAdministrationHost(SdmIdentifier id,
 RSAPublicKey hak,
 RSAPublicKey aik,
 HostConfiguration conf)

 throws SdmException

Specifies a new administration host. Every SDM may have exactly one administration host. A
administration host is the only host which can open an administration session to the SDM.

An administration host is similar to a normal SDM host. It must specify a unique identifier, a Host
Authentication Key, and an Attestation Identity Key. In addition it must also specify the one and
only valid platform configuration in which it is allowed to modify the SDM.

Parameters:

hak - the Host Authentication Key, which is necessary to authenticate the administration
session

aik - the Attestation Identity Key, which the host's TPM uses to sign its platform
configuration reports

conf - the valid platform configuration in which the host is allowed to administer the SDM

Throws:

SdmException - if an SDM error occurs.

close

void close()
 throws SdmException

Closes this SDM session and releases all related resources.

Throws:

SdmException - if an SDM related problem occurs.

Interface SdmHost
at.iaik.secricom.sdm.admin

public interface SdmHost

SdmHost manages all the information the SDM needs to communicate with a host and verify the signature
on the host's TPM's platform configuration reports.

SdmHost consists of an identifier, a Host Authentication Key (HAK), and an Attestation Identity Key (AIK).
The identifier must be unique among all platforms that host an SDM. The HAK is used to establish an

Interface SdmHost

5/22/09 Page 104

authenticated and confidential session between the host and the SDM. The AIK enables the SDM to verify
the signature on the host's platform configuration reports. The HAK and AIK are both 2048-bit RSA public
keys. In addition the SDM is capable of managing keys for several distinct hosts.

The SdmHost is part of the administration interface of the SDM. It is needed to load new host information,
or update old host information in the SDM. Each host can be associated with a number of protected
keys. SdmHost provides methods to list, add, get, and remove keys associated with a specific host. The
add method also allows to update existing keys.

SdmHost is connected to the SDM. Some of the operations directly query information from the SDM.
Therefore, a SdmHost ceases to function properly if the session that created it is closed!

See Also:

SdmKey

Method Summary Page
SdmKey addKey(SdmIdentifier keyId, SdmKey.Type type, SdmKeyMaterial keyMaterial)

Adds a new protected key to the host.
107

RSAPublicKey getAttestationIdentityKey() 106
RSAPublicKey getHostAuthenticationKey() 106

SdmIdentifier getHostIdentifier() 105
SdmKey getKey(SdmIdentifier keyId)

Retrieves a specific key of the current host from the SDM.
106

Set<SdmIdentifier> getKeyIdentifiers() 106
void removeKey(SdmIdentifier keyId)

Removes a protected key from the host.
107

Method Detail

getHostIdentifier

SdmIdentifier getHostIdentifier()

Returns:

the unique host identifier

getHostAuthenticationKey

RSAPublicKey getHostAuthenticationKey()

Returns:

the Host Authentication Key (HAK), which is a 2048-bit public RSA key

Interface SdmHost

5/22/09 Page 105

getAttestationIdentityKey

RSAPublicKey getAttestationIdentityKey()

Returns:

the Attestation Identity Key (AIK) the host's TPM uses to sign its platform configuration
reports (TPM Quotes).

getKeyIdentifiers

Set<SdmIdentifier> getKeyIdentifiers()
 throws SdmException

Returns:

a set of key identifiers for this specific host, retrieved from the SDM.

Throws:

SdmException - if an SDM related problem occurs, during retrieval of the list of keys.

getKey

SdmKey getKey(SdmIdentifier keyId)
 throws SdmException

Retrieves a specific key of the current host from the SDM.

Parameters:

keyId - the unique identifier of a key the SDM protects for this host. A key identifier must be
unique per host.

Returns:

the SdmKey with the specified identifier if one exists

Throws:

SdmException - if an SDM related problem occurs, during retrieval of the SdmKey, or if the
key does not exist.

addKey

SdmKey addKey(SdmIdentifier keyId,
 SdmKey.Type type,
 SdmKeyMaterial keyMaterial)

 throws SdmException

Interface SdmHost

5/22/09 Page 106

Adds a new protected key to the host. By adding the key to a specific host, only this host will be
able to retrieve the key from the SDM. This method actually creates a blank SdmKey object from
the specified key unique identifier, the key protection mechanism type and the key material that
must be protected by the SDM. The information will also be written directly to the SDM.
Depending on the key protection mechanism type an authorization token, a set of valid
configurations, or both must be specified in order to protect key access. To do this it is possible to
cast the SdmKey to either ConfigurationProtectedKey or TokenProtectedKey depending on the
specified protection mechanism.

Parameters:

keyId - the unique identifier of a key the SDM protects for this host. A key identifier should
be globally unique, but must be unique per host.

type - the protection mechanism type

keyMaterial - the actual key material to protect

Returns:

the freshly created SdmKey object which also implements the ConfigurationProtectedKey
and/or TokenProtectedKey depending on the chosen protection mechanism.

Throws:

SdmException - if key creation in the SDM fails.

See Also:

ConfigurationProtectedKey, TokenProtectedKey, SdmKeyMaterial, SdmKey.Type

removeKey

void removeKey(SdmIdentifier keyId)
 throws SdmException

Removes a protected key from the host. This actually erases the key from the SDM. In order for a
key object to be erasable it must be empty, that is there must not be any valid platform
configurations left that are associated with the key. If the key protection mechanism does not use
valid platform configurations, this does not apply. The key material associated with the key and
possibly its authorization token are deleted automatically.

Parameters:

keyId - the unique identifier of a key the SDM protects for this host. A key identifier must be
unique per host.

Throws:

SdmException - if removal of the SdmKey from the SDM fails. The main reasons for such an
exception are the no key with the specified identifier can be found or the key is not
empty.

Interface SdmHost

5/22/09 Page 107

See Also:

HostConfiguration, ConfigurationProtectedKey, SdmKeyMaterial

Class SdmUnknownHostException
at.iaik.secricom.sdm.admin

java.lang.Object

 java.lang.Throwable

 java.lang.Exception

 at.iaik.secricom.sdm.SdmException

 at.iaik.secricom.sdm.admin.SdmUnknownHostException

All Implemented Interfaces:
Serializable

public class SdmUnknownHostException

extends SdmException

SdmUnknownHostException indicates that an SDM operation failed, because it tried to operate on an
unknown SDM host.

Constructor Summary Page

SdmUnknownHostException()

Constructs a new SdmUnknownHostException with null as its detail message.
109

SdmUnknownHostException(String message)

Constructs a new SdmUnknownHostException with the specified detail message.
109

SdmUnknownHostException(String message, Throwable cause)

Constructs a new SdmUnknownHostException with the specified detail message and cause.
109

SdmUnknownHostException(Throwable cause)

Constructs a new SdmUnknownHostException with the specified cause and a detail message
which is null if the cause is null; otherwise the detail message is cause.toString().

109

Constructor Detail

SdmUnknownHostException

public SdmUnknownHostException()

Class SdmUnknownHostException

5/22/09 Page 108

Constructs a new SdmUnknownHostException with null as its detail message. The cause cause is not
initialized. A call to the initCause(Throwable) method may be used to initialize the cause after
exception creation.

SdmUnknownHostException

public SdmUnknownHostException(String message,
 Throwable cause)

Constructs a new SdmUnknownHostException with the specified detail message and cause.

Parameters:

message - the detail message

cause - the cause. A null value is permitted and indicates that the cause is nonexistent or
unknown.

SdmUnknownHostException

public SdmUnknownHostException(String message)

Constructs a new SdmUnknownHostException with the specified detail message. The cause cause is
not initialized. A call to the initCause(Throwable) may be used to initialize the cause after
exception creation.

Parameters:

message - the detail message

SdmUnknownHostException

public SdmUnknownHostException(Throwable cause)

Constructs a new SdmUnknownHostException with the specified cause and a detail message which
is null if the cause is null; otherwise the detail message is cause.toString().

Parameters:

cause - the cause of this exception

Interface TokenProtectedKey

5/22/09 Page 109

Interface TokenProtectedKey
at.iaik.secricom.sdm.admin

All Superinterfaces:
SdmKey

public interface TokenProtectedKey

extends SdmKey

TokenProtectedKey is a key, the release of which is at least protected by an authorization token. The
SDM offers three protection mechanisms, two of which require an authorization token. This
decorater interface defines the method a key object must support to provide authorization token
based protection. A key can be protected by both an authorization token and a valid platform
configuration. In this case the key must implement both this and the ConfigurationProtectedKey
interface.

See Also:

ConfigurationProtectedKey, SdmToken, SdmKey

Nested classes/interfaces inherited from interface at.iaik.secricom.sdm.SdmKey
SdmKey.Type

Method Summary Page
void setAuthorizationToken(SdmToken token)

Specifies the authorization token for a key.
111

Methods inherited from interface at.iaik.secricom.sdm.SdmKey
getKeyIdentifier, getSdmKeyMaterial, getType

Method Detail

setAuthorizationToken

void setAuthorizationToken(SdmToken token)
 throws SdmException

Specifies the authorization token for a key. This operation is write only.

Parameters:

token - the authorization token that governs release of this key. An authorization
token is a byte[] with a maximum length of 20 bytes.

Interface TokenProtectedKey

5/22/09 Page 110

Throws:

SdmException - if the operation fails due to an SDM related problem.

