
Distributed Agent-based Architecture for
Management of Crisis Situations using Trusted

Code Execution

L. Hluchý*, Z. Balogh* and E. Gatial*
* Institute of Informatics, Slovak Academy of Sciences/Department of Parallel and Distributed Computing,

Bratislava, Slovakia
{Ladislav.Hluchy, Zoltan.Balogh, Emil.Gatial}@savba.sk

Abstract—This article proposes a distributed architecture
designed for management of crisis situations were multiple
actors are involved from various organizations with
different competences and communicating over IP-based
networks including wireless devices. In such settings
requirements exist for secure communication and trusted
collection of data from various sources. The role of agents in
the proposed architecture is primarily coordinated
collection of information. In respect to requirements the
overall agent infrastructure must be a secure, robust and
fail resistant system. Required level of trust for agents is
based on a special hardware module which provides trusted
computing functionality. In the article we describe such
architecture in terms of detailed requirements, design and
decomposition to subsystems. We also provide a sample
scenario use case inspired by concrete crisis situation. The
architecture herein described is being used in scope of an
EU integrated project called Secricom therefore we briefly
describe the integration points with other systems involved
in the project. We conclude with current state of the
architecture implementation and with further plans
concerning the development of the described architecture.

I. INTRODUCTION

One of the challenging demands of the communication
infrastructures for nowadays crisis management is to add
new smart functions to existing services which would
make the communication more effective and helpful for
users. Smart functions are aimed to be provided by
distributed IT systems which should provide a secure
distributed paradigm to achieve confidentiality and access
to resources. Such infrastructure should further provide a
smart negotiating system for parameterization and
independent handling of access requests to achieve rapid
reaction. By fulfilling the above stated goals a pervasive
and trusted communication infrastructure satisfying the
requirements of crisis management authorities and ready
for immediate application could be introduced. More
concretely in crisis situations requirements exist to collect
information from legacy systems of various organizations
and from human operators in order to semi-automatically
manage the crisis mitigation process or enact decisions on
various management levels. This collection of information
must be enacted in a secure manner while ensuring trust
between both parties – information consumers as well as
information providers. In a crisis situation many actors
participate where the competences between all parties are
explicitly defined in a crisis mitigation plan. The gathering

of information is enacted either from legacy systems or
from human end-users through mobile devices by guided
dialog. Herein we present the requirements analysis,
design, and system decomposition of a distributed
architecture which would fulfill all the above set goals.
Further we suppose that the communication infrastructure
is IP-based.

We decided to design and implement such architecture
using agent paradigm. The distributed agent-based
infrastructure is designed as a collection of software
services with agent-like features (such as code mobility)
which would execute in a secure and trusted manner.
Agent technology was selected due to the ability to fulfill
such requirements through support of mobile and
dynamically deployable executable code. Other
advantages of agent-based systems are that they can help
overcoming temporal or longer term communication
network failures, save network bandwidth by being
executed remotely and deliver only the execution results,
provide means to execute code on remote host platforms
in a trusted and secure manner or deploy code on host
platforms on demand. The role of agents in the
architecture is primarily coordinated collection of
information. The gathering of information is enacted
either from legacy systems or from human end-users
through mobile devices by guided dialog. In respect to
requirements the overall agent infrastructure must be a
secure, robust and fail resistant system. Because validity
and authenticity of gathered information is a key factor for
decision making in crisis management trust must be set
between agents and third party information systems. Also
agents must trust the host platform providers - remote sites
which provide the computational environment for agents.
Required level of trust for agents is based on a special
hardware module which provides trusted computing
functionality.

This article is written as follows: the next section deals
with analysis of requirements and security considerations
of the proposed architecture. The third section describes
the proposed architecture with decomposition to
subsystems and envisaged core agents. The fourths section
describes a sample scenario which is used as a reference
scenario for the infrastructure implementation. The
architecture herein described is being integrated in scope
of an EU integrated project called Secricom. Therefore the
fifth section introduces the Secricom project and the
integration points of the proposed architecture with other
systems involved in the project such as the PTT - Push To

Figure 1. Infrastructure and Host Platform Providers in the

Distributed Agent-based Architecture.

Talk system, SDM - Secure Docking Module or MBR-
Multi Barrier Router. The last section concludes the article
as well as presents our current achievements and plans
concerning the implementation of the proposed
architecture.

II. REQUIREMENTS AND SECURITY CONSIDERATIONS

In order to define concrete security requirements for our
architecture we sketch the basic infrastructure in which
agents will operate (Figure 1):

The home platform for agents is a network of Trusted
Servers (TS). According to [1] the platform from which an
agent originates is referred to as the home platform, and
normally is the most trusted environment for an agent.
This is also true for our agents – the network of TS is a
managed set of systems with defined security policies and
possibly managed by a central authority. From here agents
are delegated to host platforms to gather data and
information. Agents are mainly executed on remote sites
which provide the computational environment in which
agents operate. We will refer to these sites as to host
platforms (or agent platforms).

In general, any party which wishes to join the
implemented architecture and to provide information from
their legacy systems or users must introduce a host
platform for agents. We refer to such parties as Host
Platform Providers (HPP). From end-user requirements,
the following HPPs were identified (Figure 1): Resource
Providers – hospitals, fire brigade, police, warehouses or
any other entities which can play a role in the mitigation
of crisis situation; Command Centers – mobile (nomadic)
centers which coordinate locally the incident site; and
General Command Center and Operators – usually located
in one place or at least tightly interconnected.

The features of agents encompass several chosen
attributes: code mobility (without execution state) – ability
to move code to different platforms and execute there,
within the project we do not plan to support execution
state mobility (as there is no such requirement); autonomy
– ability to autonomously deliver gathered data to one or
several optional destinations; reactivity – in some cases
agents will perceive the context in which they operate and
react to it appropriately (e.g. agents can monitor
availability of some resource and notify the requestor).

Since agents collect information which is often of high
sensitivity, confidentiality and security, while at the same
time requirements for action or decision traceability exist,
agents must be provided with a secure, trusted and attested
execution environment. In the following we identify main
agent-related security threats. A detailed explanation of
generic mobile agent security aspects is discussed in [1].
Generally, four threat categories are identified: Agent
platform attacking an agent, Agent attacking an agent
platform, Agent attacking another agent on the agent
platform and other entities attacking the agent system. The
last category covers the cases of an agent attacking an
agent on another agent platform, and of an agent platform
attacking another platform, since these attacks are
primarily focused on the communications capability of the
platform to exploit potential vulnerabilities. The last
category also includes more conventional attacks against
the underlying operating system of the agent platform.

A. The Host Platform Attacking the Agent

The main threat for agents in foreign execution
environment of host platforms is the “malicious host
problem”. This is one of the main problems in the class of
“an agent platform attacking an agent“. Simple
explanation of “malicious host problem” is provided
in [2]: “Once an agent has arrived at a host, little can be
done to stop the host from treating the agent as it likes”.
Therefore, the main requirements from the agent-side are
laid out in respect to the “malicious host problem”.
Concrete security requirements of agents in respect to the
host platform are as follows: isolated execution
environment for agent execution – not only virtual
isolated execution environment but dedicated isolated
hardware preferred; means to attest the platform required
in order to detect if the host platform is in trusted state;
and protected storage for credential data (such as PKI’s
secret key).

B. The Agent Attacking the Host Platform

There are also threats stemming from an agent attacking
an agent host platform. Therefore reversely a host
platform has also requirements in respect to agents. These
requirements are more evident when provided in context
of HPPs security requirements:

1. HPPs do not want to install and execute any external
application on their systems in line with their strategic
legacy applications.

2. HPPs prefer to have a dedicated and isolated system
for agent system which would connect to their legacy
system in a secure predefined way.

3. HPPs want to be able to control what (data), when
and by who (traceability) is provided to agents.

Figure 2. Distributed architecture designed for management of
crisis situations.

4. HPPs want to be able to configure set of applications
executable on their side. Agents must be therefore audited
and verified thus mediate trust to executable agent code.

The agent platform has the following security
requirements in respect to agents: isolated execution
environment for agent execution - agents must be
executed in isolated environment (isolated hardware
preferred), so an agent can not harm legacy systems;
means to monitor and trace agents activity; and means to
configure the set of agents executable on the host
platform. In order to track agents, any agent in the
platform must be cryptographically signed. Only agents
signed with trusted authority and assigned to selected
category will be trusted by a host system. Agents need to
send signed messages to Trusted Servers.

C. The Agent Attacking another Agent

It is required that any agent which will be used in the
system will need to be audited and certified by a central
authority. In turn every host platform will be configured to
execute only agents which are certified. These two
security policies should ensure that malicious agents will
not be deployed into the infrastructure. Only a breach of
the set security policies might lead to potential agent-to-
agent security risk.

Moreover, each agent should be executed in a relatively
isolated virtual environment with limited access to data of
other parallel executed agents on the same host platform.

D. Other Entities Attacking the Agent System

Agents will also connect to legacy systems (third party
software). Therefore a risk of an agent being attacked by a
legacy system but also vice versa – the risk of attacking
legacy system by an agent also exists. The host platforms
will need to provide some kind of connection to legacy
systems. We explicitly presume that this will be a network
connection. On any network connection there is an
eavesdropping risk. Therefore another requirement which
arises from agents to the host platform is secure protected
connection to legacy systems. Physical security of
network connection can be achieved either by direct cable
connection of the host platform with legacy system or by
managed network security (managed switch with well
defined security policies). The data transport security will
be achieved primarily through encryption.

III. ARCHITECTURE

In this section we present a distributed architecture
designed for management of crisis situations were
multiple actors are involved from various organizations
with different competences and communicating over IP-
based networks including wireless.

The architecture (Figure 2) is designed for mobile
services with agent-like features (mobility, pro-activity)
which would execute on secure devices. In general
consists of interconnected trusted (TS) and untrusted
servers (US). TS carry out the following tasks: registry of
services, users and modules, public encryption keys, the
agent base (base of mobile code) or generic security
politics. Each agent has features and “abilities”, which are
used for the enactment of certain processes.

The enactment of processes is inspired by the domain
of management of crisis situations in which collection of
information from multiple systems is required. The whole

process starts with the specification of a problem in the
form of dialog. Further an agent specifies the most serious
problems which were rendered by the crises situation.
Based on the type of crisis situation and on the region
where the crisis has occurred appropriate actions are
initiated for each crisis situation type. The system will
semi-automatically generate plausible generic plans of
possible solutions (mitigation plans) of identified
problems. In the next step the specification of context will
be enacted in order to be able to generate the constraints
of the crisis situation. Relevant resource providers will be
identified in the central database based on constraints
generated in the previous step. Agents which are able to
query selected servers will be selected from the agent
base. Information about available capacities of resource
providers will be retrieved and sent back to central trusted
server base. The system will then generate a concrete plan
of crisis situation resolution based on the retrieved
disposable resource capacities. The last step is execution
of prepared plan for the concrete crisis situation.

In order to fulfill the architectural requirements set the
infrastructure was decomposed into subsystems. These
subsystems are related and will cooperate together through
defined interfaces. The list of all subsystems is in the
Table I:

TABLE I.
SUBSYSTEMS OF THE ARCHITECTURE

Subsystem Basic description and functionality

Distributed Secure
Agent Platform
(DSAP)

The core agent platform.
Will provide means for agent
deployment, execution, migration and
communication.

Process Management
Subsystem (PMS)

Based on the plan collected from users
will generate a plan of activities.
Executes the plan.

Agent Repository
(AR)

Database of system users, agents and
their certificates.
Process of accreditation of agents.

Public Key
Infrastructure (PKI)

Certification and verification of agents,
users and resources.

Resource Inquire
System (RIS)

Will provide information which system to
query for specific information.

Figure 3. Schema of a sample crisis scenario.

The purpose of the Distributed Secure Agent Platform
(DSAP) is to provide an execution environment for
different types of agents. The main aim of Process
Management Subsystem (PMS) is execution of processes
and coordination of involved agents in the emerged crisis
situation. The plan scenario for each type of crisis
situation will need to be pre-prepared in form of an
abstract process. The exact execution of such plan in a
concrete situation will depend on the context of the crisis
situation. The agents available within the herein proposed
infrastructure have to be stored on Trusted Servers, from
which they can be requested for deployment on the side of
HPPs – this functionality is encompassed within the Agent
Registry (AR). Public Key Infrastructure (PKI) will allow
certifying, and subsequently verifying, all the objects
deployed in the infrastructure. Agents will require having
information about the information sources which can be
queried in order to retrieve information about resource
availabilities. Resource Inquire System (RIS) will provide
an interface which will provide such capability.

Additionally there is a set of core agents which are
required in order to ensure functionalities of the
architecture. List of agents including their brief
functionality description is in the Table 2:

IV. SAMPLE SCENARIO

Herein we present a sample scenario in which
coordinated information collection using agents takes
place. The presented scenario is not a typical crisis
scenario were emergency responders are involved but
demonstrates all the important and useful abilities of
agents in such distributed settings.

The schema on the Figure 3 depicts an imaginary
epidemic crisis scenario: A country has a sudden rise in
number of people sick from an epidemic flu. There are
many infected people and others are suspected to be sick
soon. The organization responsible for mitigation of
epidemic is UVZ. Personally a Chief Officer (CO) at UVZ
is responsible for such situations. CO decides to set
warning level to 5. As part of this warning level UVZ
needs to make sure that there are sufficient supplies of
vaccines in regional UVZ branches (RUVZ). Such
information must be retrieved from legacy systems of
each RUVZ. CO must delegate this information collection
to an officer at another organization called SHR (O2).
After the officer at SHR finds out about the supplies at
individual RUVZ he needs to delegate the task of
distributing additional sufficient amount of vaccines to an
Officer at SHR Warehouse. Information about
complement shipments of vaccines to RUVZ is sent by
SHR Warehouse Officer directly to SHR Officer which

redirects this information to CO at UVZ. Concrete steps of
the scenario are the following:

1. CO initiates a new Crisis Situation in the UCA user
interface, where CO opens the UCA and selects “Initiate
Crisis Scenario” of type “DiseaseEpidemic” and sets
“Level” to value 5.

2. PMS is informed about new crisis. PMS checks if
request is signed and whether CO is trusted and has rights
to initiate the mitigation. After confirmation is send back
to CO’s UCA, possible (pre-prepared) mitigation plans
and list of qualified responsible persons (officers O1-O3)
is generated.

3. CO selects the right mitigation plan and decides to
ask O2 to supervise this process. The process is in this
stage in an abstract format, i.e. details are not concretized.

4. PMS informs O2’s UCA that he is responsible for
supervising the process. He is also asked to concretize the
process, in this case by specifying “DrugName” and
“VacPer1000” properties.

5. O2 accepts to supervise the process and specifies
required properties.

6. PMS is informed about “DrugName”. PMS needs to
find out who is able to supply “DrugName” resource.
PMS contacts RIS with a query to provide all suppliers of
“DrugName” resource.

7. RIS replies with a list of RUVZ.
8. PMS now can query all RUVZ for availability of

resource called “Tamiflu”. PMS formulates the query and
sends List of RUVZ and where to send the result. Query is
send to AR (AgentRepository). Also deadline for result
delivery is specified.

9. AR must select an appropriate agent (of IDA type)
for each RUVZ because each RUVZ might have different
legacy systems. AR sends out agents to collect relevant
data. Agents are deployed to each resource provider
(RUVZ in this case).

10. Agents send back their response to query.

TABLE II.
CORE AGENTS USED IN THE ARCHITECTURE

Agent Functionality

Information Delivery
Agents (IDA)

IDA agents will need to connect to legacy
information systems of third parties to
retrieve information about available
resource capacities

User Communication
Agent (UCA)

Will communicate with users in a form of
guided dialog through electronic device.
Will include authentication and interface
to authorization of the user.

IP Agent (IPA)
An agent able to configure IP devices
such as routers.

Secure Docking StationSecure Docking Station
Figure 4. Schema of how SDM, TPM, TDS and SDS relate.

11. Data are collected by PMS and after deadline sent in
consolidated form to O2. O2 reviews the data where he
can see current stock amounts at each RUVZ warehouse.

12. O2 creates order to distribute missing drugs to
RUVZ. This will be a request for resources to be
ordered/delivered. Request is send through PMS to
Officer at SHR Warehouse. O2 is able to specify that each
region should be equipped with 100 vaccines per 1000
people. Based on information about population of regions
vaccine numbers are computed order is created.

13. PMS requests AR to send OrderAgents to the
officer. At SHR Warehouse.

14. ShipmentAgent is sent out to each RUVZ.
15. ShipmentAgent informs PMS about the status of

deliveries.
16. PMS informs O2 about status of deliveries.
17. O2 informs PMS about process status.
18. PMS informs CO about process status.
Please note that in this scenario communication

between users is proposed to be done using UCA – User
Communication Agents. UCA is able to communicate
with users either through computer or through a mobile
device. UCA collects information from a user through a
sequence of simple forms. UCA summarizes the form
results and sends it to PMS for further processing. The
IDA – Information Delivery Agent is used for retrieving
information from legacy systems. There might be different
types of IDA suitable for different legacy systems of
various resource providers. There are also other agents
used in the scenario such as OrderAgent or
ShipmentAgent – which are specific purpose agents. The
only agent not mentioned in this scenario is the IP Agent –
this agent is intended to configure routers or other active
configurable IP devices. IPA can semi-automatically
configure the network according to current need of the
crisis responders. For example in our sample scenario we
could use IPA to prioritise the communication between
the officers at UVZ and SHR.

V. INTEGRATION WITH OTHER SYSTEMS

The architecture herein described is being used also in
scope of an EU integrated project called Secricom [9].
The implementation of the architecture in the project is
called Secure Agent Infrastructure (SAI). SAI solves the
timely delivery of relevant information, obtains the
information about available resources (material or human)
and helps the authorities manage the distribution of such
resources. SAI also communicates with legacy
information systems operated by agencies and institutions
involved in the crisis resolution. There are several systems
to which SAI gets connected. Concretely we describe
integration with SDM - Secure Docking Module, PTT -
Push To Talk system and MBR-Multi Barrier Router
systems.

In order to overcome threats described in section II,
agents require safe secured place to store cryptographic
credentials (PKI secret keys) and provide interfaces to
retrieve these keys, ways to attested platform (execute on
a host platform which is in a trusted state) and provide
interface to safely communicate with legacy systems. All
these functionalities are provided by a hardware module
called Secure Docking Module (SDM) [5, 6]: SDM is a
key storage device with local attestation and verification

capabilities. SDM establishes trust on the host platform
where agents are being executed – called Trusted Docking
Station (TDS). A trusted state is a specific software
configuration. This software configuration is measured by
using a Trusted Platform Module (TPM). A TPM is a
special security chip which provides amongst other
functionalities the protected capability of measuring the
software configuration of its host device. A TPM must be
present in the TDS. The combination of a SDM and a
TDS is called a Secure Docking Station (SDS) as shown
on the Figure 4.

SAI uses SDS deployed in a physical proximity of the
legacy information system, preferably in the same room
and acts as a secured and trusted extension of the
Secricom infrastructure. SAI executed in SDS eliminates
the exposure of the legacy IS to the outside world and
allows the operator of the legacy IS to have increased trust
in the information consuming party. SAI can process the
information received from the legacy IS while conserving
the network bandwidth, limiting possible exposure of
sensitive data – sending back the results only and
continuing data processing even if the connection to the
outside world is intermittent. More information about
these technologies can be found in [5, 6].

Secricom PTT (Push To Talk) is a client-server
communication system using IP protocol and is developed
by a Slovak company Ardaco [7]. PTT optimizes and
protects the way teams of people communicate without
being concerned about misuse of information. Regardless
of communication endpoint (mobile, laptop or handheld)
the communication is secure and safe. SAI connects to
PTT servers in order to communicate with users.
Concretely UCA agent is being integrated with PTT
through implementation of simple forms. PTT takes care
of delivering and displaying the forms on the user side,
while UCA is responsible for the form processing. Forms
are being automatically generated by PMS during run-
time in accordance to overall process status and process
configuration. Integration of UCA with PTT adds a more
flexible way of data collection and user communication to
Secricom infrastructure.

The Secricom Multi Bearer Router (MBR) is a modular
router development platform and is developed by a UK-
based company QinetiQ [8]. MBR provides one of the
core Secricom platforms and delivers the IPv6 network
enabling overlay. It provides seamless, ad-hoc end-to-end
connectivity between various legacy and emerging next
generation, static and mobile bearers, networks and user
access devices. SAI integrates with MBR using the IPA
agent. MBR must be equipped with SDS in order to
provide trusted and attested execution environment for
agents. IPA agent is able to configure different properties
of network such as communication prioritization or
bandwidth control between different bearers.

VI. CONCLUSION

In this article we have analyzed the requirements for
agent-based systems and have proposed a distributed
architecture designed for management of crisis situations.
We have decomposed the proposed agent architecture to
subsystems and identified several core agents to be used in
an architecture implementation. A sample scenario was
described, which demonstrates the possible use of
individual agents in case of a crisis in a distributed IP-
based communication infrastructure. Lastly we described
the use of the proposed architecture in scope of an EU
integrated project called Secricom.

Currently the proposed architecture is being
implemented in Java [10] using a Jini [11] services
technology framework. All the subsystems identified in
Table I are implemented and are in pre-prototype version.
There are also core agents (Table II) implemented and
deployed in the system. Currently integration work is in
progress with SDM, PTT and MBR systems as described
in section V.

Our overall goal is to provide full prototype
implementation of the proposed framework. We believe
that besides crisis management there are many other
application domains where trusted code execution using
agents is appropriate to use and where the proposed
distributed agent-based architecture would suit well. In the
future we plan to identify other suitable problem domains
for our architecture and customize the system for use in
other challenging distributed infrastructures.

ACKNOWLEDGMENT

This work is supported by projects SECRICOM FP7-
218123, APVV DO7RP-0007-08, SEMCO-WS APVV-
0391-06, VEGA No. 2/0211/09, VEGA 2/0184/10.

REFERENCES
[1] Wayne Jansen, Tom Karygiannis: Mobile Agent Security – NIST

Special Publication 800-19. National Institute of Standards and
Technology, Computer Security Division, Gaithersburg, MD
20899.

[2] Niklas Borselius: Mobile agent security, Electronics &
Communication Engineering Journal, October 2002, Volume 14,
no 5, IEE, London, UK, pp 211-218.

[3] Kocis et al: SECRICOM – Analysis of external and internal
system requirements. Deliverable report D2.1, the SECRICOM
project, February 2009.

[4] O’Neill et al: SECRICOM – Analysis of Crisis Management
System Requirements. Deliverable report D2.2, the SECRICOM
project, February 2009.

[5] Šimo et al.: SECRICOM - Security requirements and specification
for docking station module. Deliverble report D4.1, the
SECRICOM project, April 2009,
URL: http://www.secricom.eu/public-deliverables

[6] Hein et al.: Functional specification of the Secure Docking
Module. Deliverable report D5.1, the SECRICOM project, May
2009, URL: http://www.secricom.eu/public-deliverables

[7] Ardaco homepage. URL: http://www.ardaco.com/
[8] QinetiQ homepage. URL: http://www.qinetiq.com/global.html
[9] Secricom Project Homepage. URL: http://www.secricom.eu/
[10] JAVA Home. URL: http://java.sun.com/
[11] Jini Homepage. URL: http://www.jini.org/

